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BEVEZETÉS

Hazánk agrárfelsőoktatási imtézmémyei közlil e%-"eaör a Deb-
receni Agrártudományi Egyetemem indult m*g 58 :,̂ a az ope-
rációkutatás mezőgazdasági alkalmazása lehetőségeinek ás
módszertani kárddseinek tudományom kutatása. Számítógép igény-
bevátaláről akkor mág eső sem lehetett, ennek ellenére újabb
és újabb tarOleteken slkerU] t as alkalmazás módszertani kér-
déseinek cldolgozáBa, kézi számításokkal tesztmlye a gyakor-
lati alkalmazások lehetőségeit.

A tudományos kutatásban történt előrebalaúáa lehetgvé
tett*, hogy a: ország agrárfelagoktatásl intézményei közUl
szinten először Bebreoenben induljon meg már 1961-ben fakul-
tatív tárgykánt az operáoiókutatáe, valamint az operációkuta-
tás me:5gaBd&aágl alkalmazása módszertani kérdéseinek az ok-
tatása.

A tananyâ ,: betekintést öngedett a halmazelméleti alapok,
a aátrizalgubra, a lineáris tár, a lineáris programozás tárgy-
köreibe, valamint ráazl@t@s@bb ismertetet ayijtott a Debrece-
nl Agrártudományi Egjetemen kléolgoaott meafgazdasági alkal-
masáeokkf.1 kepcaolr.tos módszer tani kérdésekről, s n&ml isme-
retet adott a nemlineáris programomáaról áa más operációkuta-
tási ő d k A

Á fejl6d@s-e feltételek hiánya és számos objektív ás szub-
jektív akadályozó tónyező ellenére is-tör@tlen Tolt mind a
tudmaanyoa kutatáebm, mind &z oktatágban, s ma z^r senki nem
kárdíjelezí mag az oparáeiókutatás mezőgazdasági alkalmazása
tHáományae kutatásának latjogosultságát dg szUka^&asBdgdt,
sem pedig az oktatás szaksdgessegdt. Sgtl Tmrseny kezd kiala-
kulni e területen, ami termenaetmsen együtt jár vadhajtások-
kal lg, de elvitathatatlan, hogy ez jobb helyzetet teremt,
mint az amikor a legnagyobb problémát a asubjektfv ellenállás
okozta, másreszt mint mindig, ilgy most ia igaz, hogy egy dj
tudományág gyGzelemze jutása zokak szamláletínek gyökeres
megváltozását kívánja es ermdmdnyezl.

Bizonyos, hogy az operációkutatás ellamarásáben és térhó-
dításában nagy szerepet játszott, hogy születése pillanatá-
tól kezdve nagyfokú törekvés mutatkozott a gyakorlati alkal-
mazásokra.

Kezdetben ez a törekvés nagy ellenállást váltott ki, de
helyenként ennek ellenére sikerült egy-egy eredményes kísér-
leti alkalmasáé és már 1968-ban átadáera Került egy lineáris
programozással megalapozott komplex vállalatfejleaztésl terv
t*ra@lgezöv«tke«*t számára. Ettől kezdve - hullámvölgyekkel
tarkítva ugyan - mind nagyobb számban készültek komplex vál-
lalati fejlesztési és éves tervek, miközben állandóan fejlő-
dött az alkalmazás módszere, ami vágOl is elvezetett egy auto-
matizált tervezési rendszer kidolgozásához.
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A mezőgazdasági Tállalatoknál is mindinkább megteremtőd-
tek a számítástechnika gépi feltételei biztosításának lehe-
tőségei, a kezdetben szerényebb, majd fejlettebb technikai
eszközök kezdtek elterjedni a mezőgazdaságban. E változások
különböző feladatok megoldására alkalmas számítógépes rend-
szerek kidolgozásához vezettek. Különösen előtérbe került a
számviteli és nyilvántartási rendszerek kidolgozása és elter-
jedése. Ennek nem osak az a magyarázata, hogy a számviteli
** nyilvántartási rendszerek kidolgozása egyszerűbb lehet,
mivel ezek nem igényelnek semmiféle bonyolultabb matematikai
apparátust, hanem az is, hogy a múltra vonatkozó tények rög-
zítése egyszerűbb, kézenfekvőbb, másrészt, hogy a könyvelés
és a nyilvántartás kötelező a mezőgazdasági vállalatok szá-
mára, meghatározott keretekben, amíg a tervezés és döntés-
megalapozás meghatározott keretei és ennek betartása ese-
tenként formális, gyakran nem segíti, sőt gátolja a tervezés
optimalizálással történő megalapozását. Bizonyosan szerepet
játszik itt az is, hogy az agrármérnökök még ma is jobban
szeretik a kényelmesebb "tapasztalatokra, logikai megfonto-
lásokra" alapozott vezetést, mint a sokkal nagyobb elmélyült-
séget, szabatosságot és matematikai /operációkutatási/ isme-
reteket igénylőt. Ez utóbbi hatékonyabb, de nehezebb, nagyobb
felkészültséget kíván, s megfelelő ösztönzés hiányában alig-
ha várható elterjedése.

Az operációkutatás mezőgazdasági alkalmazása gyakran igen
hatékonynak bizonyult, s ma már olyan számitógépes eljárá-
sok is rendelkezésre állnak, amelyek a felhasználóktól nem
igényelnek feltétlenül magasabb matematikai ismereteket, hi-
szen az adott probléma megoldásához szükséges matematikai mo-
dellt is a számítógép állítja elő. A felhasználó munkája ez
esetben osak az alapadatok helyes megadására és az eredmé-
nyek szakmai elbírálására, tehát kizárólag az érdemi, szakmai
munkár* irányúi.

Ma már aligha vitatható, hogy a jövő a számítástechnika
alkalmazásáé. Ezt az utat a mezőgazdasági vállalatok sem ke-
rülhetik meg, és az agrármérnökökkel szemben mindinkább kö-
vetelmény, hogy olyan operációkutatási és számítástechnikai
alkalmazási ismeretekkel rendelkezzenek, amelyek a számítás-
technika hatékony alkalmazását lehetővé teszi. Más kérdés,
hogy még ma a gyors fejlődés időszakában is találunk agrár-
szakembereket, akik csak a 10-20 évvel ezelőtti helyzetet
ismerik, s ezen a szinten is gondolkodnak.

A számítástechnika hatékony alkalmazása elképzelhetet-
len anélkül, hogy a döntésmegalapozásban, tervezésben, szer-
vesésben, az operatív irányításban és gazdasági elemzésben,
azaz a vállalati vezetés minden területén alkalmazzuk a szá-
mítástechnikát. E területeken pedig a fő szerep az operáció-
kutatásé.
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Célunk a Debreceni Agrártudományi Egyetem hallgatóinak a
kémébe adni egy olyan tananyagot, amely felOlell a legfonto-
sabb operációkutatási ismereteket, előaegiti azok elaajátí-
tlsát éa megteremti am alapot me*Oga*daaagl alkalmazásokhoz,
melyet & későbbi tananyagokban lemérnek meg. Másrészt töre-
kedtünk arra, hogy munkánk egyidejűleg kézikönyv jellegű le
legyen, a támpontot nyíljteon a vágsett hallgatóknak, vala-
mint a gyakorlatban dolgozd és as operáoiókutatá* Iránt ér-
deklődő smakembereknek a» ogeráoidkutatárni lemeretek elma-
játltáaára, llletre felelevenitámdre.

Bár a memőgamdamágl alkalmazások módszertani kérdéseivel
rászleteeen más tananyagokban foglalkozunk ég ehelyett alap-
vető célunk az operációkutatási módszerek megismerése, ahol
lehet a problémát mezőgazdasági alkalmazási szemlélettel tár-
gyaljuk, azon cél által ve*6r«l?e, hogy a: elméleti és a mód-
szertaai Ismereteket a: agrár»K.kemberek gondolatvilágában
szakmai érdeklődési terábe helyezve megkBnnyitgOk azok elsa-
játítását. Z*t azolgálják a jegyzetbea található mesggamda-
ságl alkalmazási ismeretek 6a példák is.

Reméljük, hogy törekvéseink sikerrel járnak dg elősegítik
azt, hogy a jövőben az operációkutatás alkalmazása szerves
része legyen a mezőgazdászi vállalati vezetésnek.
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1. FEJEZET A: operáoiókutatáaról

1.1. Az operációkutatás fogalma

Operáció műveletet, tevékenységet jelemt /pl. hadművelet,
sebészi müvelet, pénzKgyi *Iv*l*t mtb/.

Operációkutatás a fentiek amősmerlnti értelmezésében
műveletkutatást, tevékenyséxkutatáat jelent.

Az operációkutatás ilyen egyszerű megfogalmazása igaz-
ságtartalma mellett nem elégíti ki általában az operáció-
kutatással foglalkozókat, sem pedig az operációkutatás tar-
talmi tudományos igényeit. Sem caoda tehát, ha a kBlönböző
szerzők kOlOnbBmgkóppmn határozzák meg az oparáalókutatáe
fogalmát. A többféle megfogalmazásból klesúrhetők azok az
általános jegyek, amelvek az oceráoiókutatáa tartalmához
hozzátartoznak. Ezek lényegebea a következőkben foglalka-
tók ösaze: ^̂

- Az operációkutatás operáció alatt általában
célirányos operációt /tevékenységet, núvele-
tet/ értelmez.

- Az operációkutatás olyan tudományos- gya-
korlati tevékenységnek tekinthető, amelynek
célja a döntések előkészítése, meaalapwása.
Az operációkutatás vizsgálatait

mlélettel és tudömSúros m ő d e j
Fagy szerephez jutnak vizsgálataiban a

omáayoa
szemlélettel és tudományos modemmrekkel vég-*«rekk

_ , . _ilatal
@dellezési és a matematikai eljárások.

Iszerek.

As Angol Operáoldkutatási Társaság ez operációkutatás
fogalmának meghatározására a: alábbi definíciót fogadta
el: "Az operációkutatás a tudomány módszereinek alkalma-
zása a nagy emberi, gépi, anyagi és pénzUgyi módszerek
Irányitáeának, vezetésének komplex problémáira a% ipar-
ban, a kereskedelemben, a közigazgatásban és a honvéde-
lemben. Jellegzetes közelítés! módja a rendszer tudomá-
nyos modelljének megalkotása olyan tényezők mérése út-
ján, mint a véletlen és a keakázat, amelyekkel az alter-
natív döntések, stratégiák és irányítások eredményei
előre számbavehatők és összehasonlíthatók. Célja, hogy
segítsen a vezetésnek politikáját és cselekvéseit tudo-
mányosan megalapozni!"

Mint minden definíció, úgy es is vitatható. Sgyrészt
az operációkutatás területét nem ]*h@t - és egyre kevésbé
lehet - az ipar, kereskedelem, a közlgasgatás és honvéde-
lem területére szűkíteni.



Éppúgy alkalmazható a mezőgazdaság, a közlekedés és hírköz-
lés, a politológia, a szociológia, pszichológia, biológia
stb. területén, illetve ez élet minden területén. Az sem
biztos, hogy a véletlen tényezőket és a kockázatot ki kell
emelni a többi tényezők közül. Az viszont alighanem kie-
melendő, hogy az operációkutatás egzakt vizsgálatokat, ma-
tematikai módszerek alkalmazását, de mindenkeppen egzakt
gondolkodásmódot jelent, legtöbbször bonyolult rendszerek-
kel foglalkozik, amelyek matematikai vizsgálata számítás-
technikai eszközök alkalmazását teszi szükségessé.

Amennyiben az operációkutatás célja, hogy segítsen a
^esetésnek politikáját és cselekvéseit tudományosan megala-
pozni, akkor az operációkutatást a döntésmegalapozás tudo-
"gyának tekinthet

szitásét szolgálna, s ennek során tudományos, matematikai
mánvának tekinthetjük, amely az optimális döntéseket előké-

módszereket használ fel. Az operációkutatás tehát nem egyen-
lő a döntéssel, vagy a vezetéssel, csupán a helyes döntés,
a célszerű vezetés megalapozásának eszköze. A döntés mega-
lapozása a döntéselőkészítést. a tervezést /vállalatgazda-
sági, termelési, technológiai, term@l«BBzervezési, operatív
irányítási tervek elkészítését/, a döntési alternatívák ki-
dolgozását mindenképpen magábafoglalja.

1.2. Az operációkutatás kialakulása, történeti áttekintés

Az operációkutatás kialakulását a II. világháborútól
ssámítják, amikor le stratégiai, hadműveleti tevékenységek
megtervezésében alkalmazták állítólag eredményesen. Felme-
rültek például olyan feladatok, hogy milyen nagyságú hajó-
konvojokat célszerű összeállítani és azoknak melyik lehetsé-
ges tengeri útvonalon célszerű katonákat, vagy hadianyagokat
a tengeren átszállítani. Számítani kell arra, hogy az ellen-
ság meg akarja akadályozni a szállítmány célbaérkezését,
felderítést, majd támadásokat végez a szállítmányok ellen.
A döntésnél figyelemmel kellett lenni arra, hogy a nagyobb
hajókonvoj nagyobb véderőt képvisel az ellenséges támadásoké
kai szemben, de lassabban halad, így az ellenségnek több
idő" áll rendelkezésre e felderítésre és a támadásokhoz. A
kisebb hajókonvoj gyorsabban mozog, rövidebb idő alatt te-
asi meg a tengeri útvonalat, de kisebb véderejénél fogva
sebezhetőbb. Másrészt hasonló probléma vetődik fel az út-
vonal megválasztása tekintetében, mivel a rövidebb útvonal
megtételéhez kövesebb időre van ugyan szükség, d@ az
ellenség által jobban ellenőrzött és fennáll a veszélye,
hogy a hajókonvojokat hamarabb felderítik, hosszabb úton
viszont megnehezül & falderítés és a támadás, de erre az
ellenségnek több idő áll rendelkezésre.

A háború befejezése után a hadltevékenység céljára kifej-
lesztett eljárásokat a gazdaság helyreállításaié, különösen
a közgazdasági tevékenység megalapozottabbá tételére kezd-
ték egyre inkább alkalmazni, vagyis az operációkutatás
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- más területek mellett - közgazdasági alkalmazások terü-
letére tevődött át. Természetesen, mint általában minden-
nek, így a matematikai eljárások közgazdasági alkalmasa-
sának is messze a múltba nyúló gyökerei találhatók.

A matematikának a közgazdasági tevékenységben való al-
kalmazása iránti igény lényegébea a ZTIII. saázadban je-
lentkezik. Már Francois Quesnay közgazdasági táblázatai-
ban megtaláljuk a lineáris programozás modelljének legegy-
szerűbb példáit. Quesnay közgazdasági táblázatalt Marx is
zseniális ötletként értékelte. """""""

A H Z . század közgazdászai közül kiemelkedik B.G.
Osemisevszkij. kinek közgazdasági tanulmányalt Mark ás
Lenin is nagyra értékeltek. "Már sok példából laTEattuk,
milyen módszereket alkalmaz a politikai gazdaságtan a ma-
ga feladatainak megoldására. Ezek * módszerek matematikai-
ak. 3 ez nem Is lehet másként, hiszen ennek a tudománynak
a tárgyai mennyiségek, amelyek megszámlálhatok és mérhetők,
s csupán számolás és mérés útján foghatók fel."
/B.G. Csernisevszklg: Izbrannüe ekonomioseszkije proizve-
gyenlja. III. 51. old. Gaszpollzdat 1948./

Ismeretesek Mari újratermelési sémái és "Matematikai
füzetei", amelyéTTarról tanúskodnak, hogy Mari Is igen
nagy figyelmet szentelt a közgazdasági jelenségek matema-
tikai elemzésének, lenin továbbfejlesztette Mari újrater-
melési sémáit, és igen nagy jelentőséget tulajdonított a
jelenségek matematikai leírásának és elemzésének.

Z.Walras 1874-ben már egy bonyolult matematikai modellt
dolgozott ki. J.2.J. Pourier nagy matematikus 1823-ban
először vizsgálta meg a lineáris egyenletek rendszerében a
legkisebb maximális eltérés meghatározásának problémáit.
A feladatot a sokrétű halmaz legalsó pontjának megállapítá-
sára vezette vissza. Módszere az egyik csúcspontról a másik-
ra való sorozatos eltolásból állt, vagyi* tulajdonképpen
a jelenleg széles körben alkalmazott szlmplei módszer alap-
ján állt. Az g példája tekinthető a legrégibb lineáris
programozási példának.

A valószínúségszámítás és sok más területen kifejtett
munkássága mellett jelentős mértékbem járult hozzá a lineá-
ris egyenletek és egyenlőtlenségek mélyebb megismeréséhez
is K.P. Gauss /1826/. Algoritmust dolgozott ki normál
egyenletek gyakorlati megoldására. Cramer svájci matemati-
kus 1150-ben a lineáris egyenletrendszerek megoldására &e-
vezette a determinánsokat. P.Gord&n 1873-ban tételt dolgo-
zott ki, mely szerint a nem negatív homogén egyenletrend-
szemek van megoldása, amelyben legalább egy váltoa& pozi-
tív, ha a másodlagos rendszerben az éles egyenlőtlenségek-
kel nlnos megoldás. B.Mlnkowski transzpozícióval alkotott
tétele, J.farkas 1902-ben publikált tétele alapvető jelen-
tőségű a matemaTlkai programozási feladatoknál. F.Stimke
1915-ben kiegészítette Gordan tételét.
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A magyar származású Neumann János 1928-ban megjelent
"Minimax" tételében továbbfejlesztette Emil Borel munká-
ját, s ezzel lerakta a lineáris egyenlőtlenségek elmále-
táaek matematikai alapját. Elméletének jelentősége akkor
bontakozott ki igazán, amikor Morgensternnel egylltt 1944-
ben kiadta alapvető művét. /Heumann J. - Morgenstern 0.8
l'aeory of Games and Economic Behaviour. Princeton, 1944./
1932-ben jelent meg. "Az általános gazdasági egyensúly
modellje" c. munkája, melyben a lineáris programozás di-
namikus modelljét fogalmazta meg. A továbbiakban is ve-
zető szerepet játszott a tudomány sok területén. Különö-
sen nagy volt a hatása az atomenergia és az elektronikus
számítástechnika fejlődésére. Az USA-ban 1945-ben kezd-
ték el az első elektronikus számítógépek sorozatgyártá-
sát, melyet Busch készített Neumann János részvételével.

A XX. században a közgazdaságtan fejlődése, és a ren-
delkezésre álló információk mennyiségi növekedése és
minőségének javulása mindinkább lehetővé teszi, hogy a
közgazdasági kutatásokban az elméleti modellekről az empi-
rikus modellekre térjenek át. Ezt nagyban elősegítette
az is, hogy a reprezentatív statisztikai megfigyelés ás
beoslee moásüarának kidolgozása lehetővé tette mind több
közgazdasági jelenség megfigyelését, illetve becslését.
Kezdték alkalmazni a jelenségek vizsgálatában a regresszi-
ő analízist, amely a jelenségek közötti kapcsolatok mé-
lyebb feltárását teszi lehetővé, & trend analízist, intra-
polációt és extrapolációt, a jelenségek időbeli változásá-
nak vizsgálatára.

Jelentős lépés és ösztönző volt a tudományok fejlődé-
sében, hogy a Szovjetunióban már a szocializmus építésének
első eveiben különböző mérlegszámítási módszereket dolgoz-
tak ki, majd pedig az 1923/1924. évre megszerkesztették a
Saovjetiiaió népgazdasági mérlegét.

W, Lepni; i-eff |t ismerve a Ssovje tűni óban végzett mórleg-
k8sáî S"s's'el""fca'pcsclatos munkákat 1936-ban megalkotta az
aiaeriiiai gazdaságra vonatkozó mérleget, a ráfordítás és
termékkitocsátás amerikai mérlegét. Leontieff érdeme,
hogy ő kombinálta először a termelési mérlegnek és a tár-
sadalmi termák, illetve a nemzeti jövedelem elosztásának
tÚDláaatait és a mérlegnek matematikai értelmezést adott.

JifY KaatorovicB szovjet matematikus hosszií évek során
íogíalk'öaöt'fc a matematika tervezési feladatokban való fel-
használásával. 1939-beu. megjelentette részletes monográfiá-
ját s amelyben először tárta fel, hogy a legfontosabb ter-
melési feladatok nagyrásse tisztán matematikai alakban kifér
jezhető. /L.7. Kantorovics; Matematicseszkije metodü
organyísacli í planyirövSHyija proizvodsztva. Izd. LGTJ.
Moaskva, 1939/.
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Véleménye szerint ez lehetőséget ad arra, hogy a feladato-
kat mennyiségi oldalról közelítsük meg és számoló eljárá-
sokkal oldhassuk meg. Számos olyan, a termelés szervezése
és tervezése körébe tartozó kérdést tett vizsgálat tárgyá-
vá, melyeknek különböző megoldásai lehetnek, @ ezek közül
kell az optimálisát kiválasztani. A probléma megoldása
olyan matematikai szélsőérték feladatokhoz vezet, melyek-
ben a változók lineáris függvényeknek és korlátoknak van-
nak alávetve. A feladatok megoldására Kantorovics a meg-
oldó szorzók módszerét dolgozta ki. Munkássága sok tekin-
tetben megszabta a lineáris programozási módszer tartal-
mát és további fejlődését. Későbbi munkásaága során is
igen jelentős mértékben járult hozzá a matematikai progra-
mozás fejlődéséhez. Mint Dantzig írja "Ha Kantorovics el-
aő munkált megjelenésük idején megfelelő módon értékelták
volna, úgy lehetséges, hogy napjainkban a lineáris prog-
ramozás már lényegesen messzebb tartana, mint jelenleg."
/G.B. Dantzig: Linear Programing and Eztenalona, Prince-
ton Unlversity Press, Princeton. Rew-Jersey, 1963./

A második világháború, majd azt követően a gazdaság
helyreállításának feladatai nagy lökést adtak a tervezési
módszerek fejlesztése irányában. Az USA-ban különösen az
1947-49-es években Indult meg a lineáris programozási mód-
szerek kidolgozása. 1947-ben G.B. Dantzig kidolgozna,
majd 1951-ben publikálja a szlmplez módamert, mely roha-
mosan terjedt el az egész világon és nagymértékben fellen-
dítette a matematikai programozás elméleti kidolgozását
és gyakorlati felhasználását. Az operációkutatás fejlődését
1947 után nehéz lenne nyomonkövetni /ma már bibliográfiája
is több kötetet tesz ki/, ezért osupán a fejlődés néhány
fontosabb vonatkozásainak felvázolására szorítkozunk, a
teljesség igénye nélkül.

l.Y. Kantorovics további munkássága, valamint M.K. Ga-
vurln, y.A. ZalgaTTer. G.8. Rubinstejn. Sz.R. Csemyikov
és mások munkássága a Szovjetunióban a matematika terén,
valamint a konkrét alkalmazásokra vonatkozó példáikkal nagy-
mértékben hozzájárultak a matematikai programozási módsze-
rek kifejlesztéséhez és gyakorlati alkalmazásának előbbrevi-
teléhez. Á matematikai programozás elméleti továbbfejlesztés
sével egyidőben foglalkostak a számítási eljárásé, kidolgo-
zásával is. így például a terv fokozatos javításának módsze-
re és a szorzók alsó és felső értékhatárának módszere
/L.?. KantorovloB - 7.E. Zalgaller: Raszcsot nacionalnovo
raszkraje promüslennüh materialov, lenizdat, 1951./, a
szorzók javításának módszere /!.?« Kantorovics: Matemati-
cseezkaja metodü organizaoii i planyirovanyija proizvodszt-
va. izd. 1GU. 1939/, a potenciál módszer számítási felada-
tok megoldására, /l.T. Eantorevics - M.E. Gavurin:
Prlmenyenyije matematisseszkih metodov v voproszáb anallza
gruzapotokov, Izd. AB. SzSgSzB. 1949./ jelentős munkák.
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A.J. Goldmann és A.W. Tucher, valamint D. Gale-- H.\Y.
Kuhn - A.W. Tucker a duális feladatokkal foglalkozcakT"
G.B. Dantzig. P. Gale - H.W. Kuhn - A.W. Tucker éa a magyar
származású Ya.ida Sándor kimutatták a lineáris programozás
ás a mátrix-játékelmélet ekvivalenciáját. Sok kutató foglal-
kozott a szimplex módszer továbbfejlesztésével, így H.M.
Wagner. S. Vajda. G.B. Dantzig. A. Orden. Ph. Wolfe.
Markovit?, stb. A degeneráció problémáival foglalkoztak töb-
bek között A. Charnes, W.W. Cooper. A. Hendenson. E.U.L.
Beale.

C.E. Xemke dolgozta ki a duális szimplex módszert.
Ehhez hasonló Beale vezető változók módszere, T.S. Motzkin
relaxációs módszere, A. Ordens - L. Goldstein. C.B. Tompkins
projekciós módszere, valaminf^C.S. Motzkin -~~H. Haiffa -
G.L. Thomson - R.M. Thrall kétmeghatározós módszere.

G.B. Dantzig - L.R. Ford - D.R. ffulkerson 1956-ban
egy olyan módszert dolgoznak ki, mely a lineáris programo-
zás primális és duális feladatát egyidejűleg oldja meg.
Módszerük lényegében azonos Kantorovics együtthatók javítá-
sának módszerével.

S.I. Gass. T.L. Saaty, J»I<« Kolley és mások a paramet-
rikus programozásijai foglalkoztak. Hamarosan megindult a
fejlődés a nemlin áris programozással kapcsolatban is.
A. Gharnea - C«B. Lemke és E.ü. Beale konvex célfüggvény
alkalmazását vizsgálták. Dantzig, M. Prank - P. Wolfe és
B.W. Barankin. R. Dorfman. H. Markovitz, A.W. Tucker és
H.W. Kuhn a nemlineáris /főként a kvadratikus/ programozás-
sal foglalkoztak.

A hiperbolikus programozással először Martoa Béla foglal-
kozott, akitől az elnevezés is származik.

A bizonytalan körülmények közötti, vagy sztochasztikus
programosásaal foglalkoztak J.M. Danakin. G.B. Dantzig
éa R. Rader. A sztochasztikus programozásnak különösen
nagy jelentősége lehet a mezőgazdasági alkalmazásokban.

Az egészértékű programozás módszerével foglalkozott
R.E, Goaory. S. Beer. G.B. Dantzig. A dinamikus progra-
mozág R. Ballmann nevéhez fűződik. Sok tekintetben uj
magvilagltásba helyezi a dinamikus modellek kérdését ke-
nőbb L.3. Pontr.iagin.

Bár as operációkutatás területein mind a tudományos
kutatásban, mind a gyakorlati alkalmazásban a leglátvá-
nyosabb a mateoatlkai programozás területein volt a fej-
lődés, az itt elért sikerek, valamint újabb és újabb tu-
doaAnyterOletek kialakulása és gyors fejlődése /rendszer-
elmélet, kibernetika, információelmélet, elektronikus
siáJBitOgepek. azámltogépek programozaeéra fcife.ilesBtett
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különböző programnyelvek stb./ más operációkutatási el-
járások létrejöttét és fejlődését eredményezte.

Ma már azt sem lehet pontosan körvonalazni, hogy hol
a határ az operációkutatás, ökonometria. statisztika tu-
dományágak között.

A szállítási feladatok optimalizálása lineáris prog-
ramezással is megoldható, de igen jelentős méretű mo-
delleket eredményez. A feladat megoldására kifejlődtek
más módszerek is, amelyek közlil leginkább a disztribú-
cióé módszer, a Karda-Yogel féle módszer ismert.

Bizonyos területeken - öaszefüggésvizagálatok. prog-
nosztizálás stb. - előtérbe kerültek a termelési fggg-
Yányek és a faktoranalízis.

Ktllönöaen a tevékenység szervezés területén a gráf-
elméletre alapozott hálótqrvezési módszerek /CPM, PERT/
bizonyultak hasznosnak. Mas esetekben a sorbanállási
problémák módszertani megoldásai kecsegtetnek tudomá-
nyos es gyakorlati eredményekkel. Különösen olyan ese-
tekben, amikor a megoldandó probléma nem fogalmaz!: .tó
meg egyértelműen analitikus modellekkel, valamint ami-
kor a bizonytalansági tényezők nagy szerepet játszanak,
illetve amikor nem az optimum meghatározása a cél, ha-
nem egyáltalán valamely rendszer viselkedésének vizsgá-
lata stb. nagy szereptik vas a szimulációs módszereknek.
Ez természetesen nem jelenti azt, hogy a szimulációs
módszerek alkalmazásával elvetjük az optimalizálásra
vonatkozó igényeinket. Sőt mint Csébfalvi Károly írja
"a digitális szimuláció nem a szóba jöhető optiiaalizálá-
si eljárások egyike, hanem bármilyen ismert egzakt, vé-
ges, iteratív, Monte Carlo bázisú vagy heurisztikus op*
timalizálási eljárásnak mintegy "fékpadul" szolgál.
Bgyszerű példával élve: ha ejjy szállítási problémát a
lineáirs programozás módszerével kívánunk megoldani,
érdemes az egész szállítási rendszert egy olyan egység-
gel együtt szimulálni, amelyben a szóbanforgó ssállíta-
si probléma az említett lineáris programozási módszerrel
esetről esetre megoldódik. Ilyen értelemben ágyazza be a
szimulációs modell az egzakt programozási módszert,úgy,
mint ahogy a motorok probajáratásához a valóságos későbbi
környezetet utánozza egy fékpad. Általában az operációku-
tatás számos más módszerének biztosíthatunk a sziauláci-
ós modellekkel reális környezetet, így nem tál szerencsés;.
ha a szimulációt csupán egyéb módszerek alkalzaaaáaS~lehe-
tőségének hi.ján használható módszernek tekint.1'g.¥»l{r"
/Sobert C. ffleier - William T, ffeyell - Harold L. Pazers
Szimuláció a vállalati gazdálkodásban és a közgazdasága
tanban, Közgazdasági és Jogi Könyvkiadó. Budapest,
1973. könyvhöz írt "Bevezető a magyar kiadáshoz" tanul-
mánya /14.old./
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as operációkutatási el.iárasok nem
egy _ _ _ __

V leivé a vizsgált probléma lényegének miMíg a leg-

rációkutatási el.iárasok
lenében, hanem" egymástkizárya. egymás ellenében, hanem egymást klegéazitviT

jobban megfelelő módszert vagy módszereket alkalmazva
nyújthatnak hatékony segítséget.

Hazánkban jelentős munkát végeztek ez operációkuta-
tási módszerek fejlsaztáse és alkalmazása terén Aczél
István. Arató Mátyás. Bacakay Zoltán, Boa Péter."TTsafh
Magdolna. Csáki Csaba. Csepinszk~y"Sdor. Egervári JáSös
Jandy Géza. Kádár István, kondor feyorgy'T^orltai JánosT"
Kreko Béla, iilpták TwvSS7~^rtoa Béla. Mészáros Sándor,
Módos Gyula. Pillis Pál. Prékopa András." Sebestyén Jo-

6f. Simon üy
g

z«ef. Simon üygrgy. Szeg Jenő. '^eTis É&e, "üóth JózséT.
Vámos Tibor és másoki '"" —-~~

A mezőgazdaságban az operá<: o.lmazásának •
előfutáraként talán a G.J. 3ti.:. . átával kapcso-
latos feladat megoldása tekintneti ^-York-ban
a "Matematikai táblázatok" csopor írsa,
Laderaann 1947 végán oldott meg a nam tukís-1 azelőtt ki-
íolgozott szimplex-módszer ellenőrzése alkalmával.

Mezőgazdasági térhódítása valójában aa 1950-aa években

A mezőgazdaság? alkalmazásokban jelentős szerepet
játszott E.O. Heauy az IOWA-i Allaaí Egyetem professzora,
a Magyar Tudományos Akadémia tiszteletbeli tagja, a
Debreceni Agrártudományi Bgyelsm hororia causa doktora.
A Szovjetunióban a szakma jeles képviselője volt a kez-
deti időszakban R.G. Kraycsenko. A KG3T országok már
1964-ben Prágában megtartották~a matematikai módszerek
meíŐgaadasági alkalmazása témakörben as I. Nemzetközi
Tudományos Szimpóziumot, ami tulajdonképpen az operáció-
kutatás mezőgazdasági alkalmazásával foglalkozott.

Magyarországon az 1950-es évek második í'slében indult
meg a mezőgazdasági alkalmazásokkal kapcsolatos tudományos
kutatás. Az úttörő Sebestyén József az Agrárgazdasági
Kutatóintézet munkatársa volt. Slső ismert munkája "A
termelési érték és a főbb termelési tényezők kapcsolata
a tarmelőssövetkeaetetbeíi'. /Csete L. szerk. A termelő-
azövetkesetek Qzemgazdasági kérdései/ Akadémia Kiadó,
Budapest, 1959* Később foglalkozott a tarmelésl szerke-
zet optimalisáláeával a termelés területi elhelyezésének
optimalizálásával, majd népgazdasági szintű vizsgálatoké
kai.

Az első kísérletekhez gyorsan zárkósott fel a Debre-
ceni Agrártudományi Egyetem.,ahol góth József 1958-ban
kezdett el foglalkosni az operációkutatás mezőgazdasági
&lkaij«azáaával. A tudományos kutatás itt kezdettől fog-
va 8tvöződött a gyakorlati alkalmazásokkal, amelynek
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eredménye több alkalmazás módszertani megoldás kimunkálása
és elméleti vizsgálatok elvégzése, Viszonylag hamar 1961-
ben az agráríelsőoktatási intézmények^között elsőnek a
Debreceni Agrártudományi Egyetemen indult meg •-s operáció-
kutatás oktatása "gazdasági matematika" tantárgyként.
Az első jelentősebb publikáció a témakörben 196l-ben Je-
lent meg /Tóth J.: A takarmánynövények vetésterülete opti-
mális arányának meghatározása. Statisztikai Szemle, Buda-
pest, 1961. 12. sz. valamint Tóth J.s Az tíz ami takarmány-
termelés optimális szerkezetének meghatározása lineáris
programozással. Doktori értekezés 1961./ 1964-ben
Sebestyén Józseffel együtt képviselték Magyarországot a
prágai X. Nemzetközi Szimpóziumon 2-2 előadással.

1963-ban Pillis Pál publikálja földhasznosítási opti-
mumok c. a lineáris programozást felhasználó munkáját.
/Kertészeti és Szőlészeti Főiskola Kiadványa, Budapest,
1963./

1967-ben jelent meg Mészáros Sándor;Műtrágyák hatékony-
ságának vizsgálata és elosztása matematikai módszerekkel.
/Gazdálkodás, 1967. 1. sz. Budapest./ Munkája áj lendületet
adott a matematikai eljárások mezőgazdasági alkalmazása
terén a figyelem felkeltésének.

1969-ben Csáki Csaba publikálja az Orosháai Állami Gaz-
daság számára lineáris programozás alkalmazásával készített
fejlesztési tervet /Gazdálkodás 1969. 11. sz. valamint
Akadémiai Kiadó, Budapest 1969./

A továbbiakban egyre bővült a köre azoknak, akik az
operációkutatás mezőgazdasági alkalmazásával kezdtek fog-
lalkozni, bővült a gyakorlati alkalmazás köre is. Ez utób-
bit tekintve jelentős szerepet játszottak a technikai fel-
tételek megteremtése, az alkalmazás módszertani problémák
egyre célszerűbb megoldása és hatékony szoftverek kifej-
lesztése.

1.3. Az operációkutatás helye, kapcsolata más
tudományokkal

A tudományok fejlődése mind nagyobb differenciálódás-
hoz, mine több tudományág kialakulásához vezetett. A bo-
nyolult világ megismerését a tudományok differenciálódása
részben elősegítette, részben gátolta, hiszen as egymással
szoros kapcsolatban lévő, sokoldalú jelenségeket egyaáatól
elszigetelten csupán as egyes tudományok szemszgéből és
eszközrendszereit alkalmazva aligha lehet valósághűen
vizsgálni és megismerni. Szükség volt tehát arra, hogy
egy állandó integrálódási folyamat is végbemenjen a tudo-
mányok körében és kialakuljanak olyan határtudományok,
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amelyet több tudományágat összekapcsolva v'.zsgálják bonyo-
lult világunkat. Ilyen esetekben viszont mindig felvethető
a ksrdéa, hogy vajon az adott, más tudományok határterüle-
tén lévő tudományok Snálló tudománynak; tekXsiítsetők-e? Az
is tagadhatatlanf 5i«»ĝ  aa operáoiőkutatás el'sál&sztódási
folyamata az egyes tudomáiasqgaíítól aég jelenleg ia folya-
matban van, másréast, hogy az operációkutatás különféle
tudományok /matematika, közgazdasági tudományok., hadi
tudományok, szociológia, stb./módszereit és eszközeit
alkalmazza és célja valamely rendsssr /napjainkban legin-
kább valamilyen gazdasági rendszer/aűkb"déees irányításisszervezési, tervezési, dSntésjnegalapozási problémáinak
célszerű megoldása. Ennek megfelelően az operációkutatás
azoiCi kapcsolatban vas a matematikával, hiszen essköstára
nagyrészt matematikai. Szoros s kapcsolata a rendszereimé-
lettel, hiszen vizsgálatai általában valamely rendszer mű-
ködésére irányúinak. Igen szoros a kapcsolaté a kiberneti-
kával, hissen vizsgálatának fő célja a ranfisaer irányítása*
Ilyen szempontból is elvitathatatlan kapcsolata a vezetés
és szervezéstudományokkal és /minthogy az irányítás aser-
ves része és nélkülöahutstlen essköae a megfelelő informált-
ság/ az i f a i o l l t t l

Be az operációkutatás nem veszi át a vezetés szerepét,
csupán a vezetői elöntések megalapozását segíti, viszont
mint ilyen szoros aposölatban van a döntéselmélettel.

Esetenként szinte el sem lehet határolni az operáció-
kutatást a statisztika és az ökonometria egyes területétől,
ugyanazon módszerek az egyiknél is a másiknál is felhaszná-
lásra kertilnek.

Az operációkutatás Ylzsgélódási tárgyát különbese rendsze-
rek kápezik» S rendszerek valósághű, tudományos megítélése
lehetetlen az adott rendszer törvénv=serűségeit feltáró más

k t d á k ismeretétől 6B eredményeik felhasználásától.

A gazdasági rendszerek vizsgálata elképzelhetetlen a
közgazdasági tudományok, valamint az adott területtel kap-
csolatsa szaktudományok /mezőgazdaságban pl. a növényter-
mesztési, állatienyésijéai, kertészeti, gépesitési, tech-
nológiai, talajtani stb«, sőt ezek tudouslnyos alapjait ké-
pező kémiai, fizikai, biológiai stb. tudományai/ nélkül.
Ebből Is adódik, hogy az operációkutatást team-ek /munka-
csoportok/ művelhetik hatékonyan, "agy az operáoiókutató-
aak «1 kell sajátítania mindazon tudományos Ismereteket,
amelyek az általa vizsgált rendszerek működését befolyásol-
ják. A második világháborúban, »ár az operációkutatás kia-
lakulásénak kezdőd';• : sadássst! profclé.-:̂ k megoldása so-
rán olyan csoportokat szerveztek," aaiei.yek tagjai katonai
szakeabarsk, mateaatikusok, statisztikusok, közgazdászok,
blolőguook, pszichológusok és más tudományágak képviselői-
ből álltak össze, -
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Az operációkutatás a jelenségeket lehetőleg matematikai
eszközökkel vizsgálja és nagyobb részt bonyolult rendszerek-
kel foglalkozik, amikor is a rendszer vizsgálata jelentős
adatfeldolgozást és bonyolult matematikai számi<,ást igényel,
amelyek elvégzése számítástechnikai eszközök nélkül legtöbb-
ször elképzelhetetlen. Ilyen szempontbői szoros kapcsolatban
van a számítástechnikával. A számítástechnikát eszközként
használja fel feladatainak ellátása során.

1.4. Az operációkutatási munka folyamata

Az operációkutatási tevékenység - mint arról már sző volt
- mindig valamilyen rendszer működésének vizsgálatára irá-
nyul, célja a rendszer működésére vonatkozó irányítási /veze-
tési/ döntések megalapozása, s eszközéül matematikai módsze-
rek szolgálnak. A munka fázisait a szakirodalom sokféle mó-
don írja le, a munkafázisok több vagy kevesebb szakaszra
történő bontásával, esetleg sorrendiség felcserélésével. Me-
rev elhatárolást tenni általában nem célszerű és nem is szük-
séges, hiszen a munkák folyamata, szakaszokra bontása is
függ az operációkutatás személyi és tárgyi feltételeitől, de
az egyes szakaszok ismétlődhetnek, egymást átfedhetik stb.
Célszerű azonban valamilyen általános rendező elvet kialakí-
tani, amelyet aztán keakrtt feltételek alapja* alkalaazkatunk.

Az alábbiakban a szakirodalom figyelembevételével és gya-
korlati tapasztalataink felhasználásával megkíséreljük as'
operációkutatási tevékenység rövid leírását munkafázisokra
bontva.

A rendszer elemzése

Az operációkutatási tevékenység mindig a vizsgálandó rend-
szer megismerésével, elemzésével kell, hogy kezdődjön. Ennek
során szakmailag, térben és időben körülhatároljuk az adott
rendszert, amelyre vizsgálatainkat irányítjuk, meghatározzuk
a rendszer elemeit és egymás közötti kapcsolatait, e kapcso-
latok lényegét és mibenlétét, a rendszernek és elsiaeinek kap-
csolatait más rendszerekkel /külső, rendszeren kívüli kapcso-
latok/, a rendszer viselkedését, a rendszer viselkedésére ha-
tó tényezőket és korlátokat és a rendszer viselkedésében meg-
mutatkozó törvényszerűségeket stb., s természetesen meghatá-
rozzuk a rendszer célját stb.

A rendszer elemzése során arra törekszünk, hogy feltárjuk
a rendszer jelenlegi állapotát, helyzetét, múltbeli viselke-
dését és következtessünk a rendszer változtatásának, illetve
a működésében elérhető változtatásoknak a lehetőségeiről is.
Ennek során általában eljutunk egy olyan koncepció kialakítá-
sához, amelyben meghatározzuk a rendszer változtatásának le-
hetőségeit és korlátait, nem döntve természetesen a konkrét
változtatások tekintetében csupán lehetőségeit körvonalazzuk.
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A rendszer modellezése

A rendszer megiamarásíí, elsazését követheti a rendszer mo-
dellezése. Snack során miaáenakelőtt meghatározzuk, hogy milyen
matematikai modelleket alkalmasunk:, majd biztosítjuk a modell-
hez szükséges paramétereket /a modell adatbázisát/, a modellt
létrehozzuk, megoldjuk, variánsssámításokit végzünk éa azoic
eredményeit elemezzük.

A modellezés segítségével általában eljutunk valamilyen
elméleti, vagy gyakorlati következtetéshez* illetve döntéshez,
"tszen a vizsgálatainkat /a variánsaámításokaí/ mir;dada?lg
iolytatjukí amíg megfelelő eredményhez el nem jutunk.

Az eredmények gy,8^0?̂ ,8 ,̂?-, pevezetáea

Amennyiben a modellezés során magfslelő következtetéshez,
vagy döntéshez jutottunk, akkor követkealk ennek a gyakorlat-
nr.£<n történő hasznosítása. Ennek során elméleti, illetne gya-
korlati következtetéseinket felhasználjuk a döntássk. a stra-
tégiák és taktikák kialakításához, illatva amennyiben aöntést
üoztiisk azt a gyakorlatban végrehaj tjük,

1.5. Modellek

Az operációkutatás fogalmának megbatároaáss.!sor szó volt ar-
ról, hojry "jellegzetes közelítés módja a randsser tudcEáoyos

d l l j k l b i á " l ő b b i k b láttk h
, jy j g j y

laodelljének magelbciása", a aa előbbiekben láttuk, hogy as
operáeióiaítatáai tavékenyusg léayoges munkaíáaisa a modelle-

Nyílván felmerül a kárdás, hogy mí-na_ modell?

A modell az objektív yalóaági többé-keváigbé^hű képe. Ham
maga as objektív yá'ro's'a"g'™jáera"Ts' asSak" poaios kasaTcsak
többé-kevésbé hű ttlfcre, az ember által a valóságról alkotott
leegyszerűsített káp» Az egyszerűsítés gyakran kényszerű-
ségből /a valóság ismerstánek hiányából, a valóság általunk
nem követhető bonyolultságából atb/, máskor célszerűségből
/a lényegre való koncentrálás érdekében a zavaró, mellékes
tényezők kisárása/ adódik.

A modelleket hárog_jf5 tipu.aba szokás sorolni, ágy mint;

a., Képgaerú modellek

A képszerű modellek a valóságot kápsEarűen jelenítik meg,
jellemzőjük, hogy statikusak ás csak akkor változtathatok
meg ártelemsaeruen, ha aa eredeti rendszer is megváltozik.
Ilyen képszerű modell a fénykép, a makett, a menetrend, stb.
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b. y Analóg modellek

Az analog modelleket az jellemzi, hogy a mivíigyalt
valóság és a modell jellemzői között aaoroa kapcsolat
van. Az analóg modellek visaonylag könnyen változtatha-
tók és alkalmasak dinamikus összefüggések vizsgálatára
is. Analóg modellek pl. a térképek, a grafikonok, a fo-
lyamat-ábrák, a kísérleti állatok és a növények, stb.

o., Szimbolikus modellek

Szimbolikus modellek esetén a vizsgált folyamat egyes
tényezőit és a köztük lévő kapcsolatokat natematikai
szimbólumokkal fejezsük ki. Ilyen modellek alkalmazása
során nem jelent problémát a változások hatásának elem-
zése.

Arra is lehetőségünk van, hogy kombinált modelleket
alkalmazzunk. így pl. a szimulációs modellek /amelyekkel
később részletesen megismerkedünk/ részbea analóg, rész-
ben szimbolikus modellek.

A gazdaságmateaatikai módszerek alkalmazása során
különösen fontos szerepet Játszanak az optimali zálási
modellek. S modellek tübb szempontból osztályozhatok;

Az elemi tevékenységek természete szerint megkülön-
böztetünk!

a., Polytonos modelleket, amikor a modellben szereplő
elemi tevékenységek minT~*folytonosak, tehát tí5rt értéket
is felvehetnek. FI. a termelt tejmennyiség lehet 1500
liter, 1501 liter, 1501,5 liter, vagy 1501,75 liter,
stb.
Hasonlóképpen a búza átlagtermése hektáronként lehet
2 t, 2»5 t, vagy 2,54 t stb.

b., Diszkrét modelleket. amiker a modellben szereplő
elemi tevékenységek kizárólag diszkrét tevékenységek
lehetnek, tehát csak egéaz értéket vehetnek fel. így pl.
a munkaerő lehet 500 fő, 501 fő, stb., de nem lehet
501,5 fő vagy 501,22 fő. Hasonlóképpen nem tudunk vásá-
rolni fél vagy negyed traktort, stb.

c , Vegyes modelleket, amikor a modellben mind folyto-
nos, mind pedig diszkrét tevékenységek szerepelnek. FI.
ha egy vállalatfejlesztési tervet készítőnk, a termelt
tej-, vagy termékmennyiségek törtértéket is felvehetnek,
tehát folytonos tevékenységek lehetnek, de a beszerzendő
gépek csak egész értékek lehetnek.
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Általában s gyakorlatban a folytonos modellek vaanak
Jobban elterjedve, mivel ások kezelése matematikai és
számítástechnikai szempontból sokkal egyszerűbb. Ha
azonban a folytonos modell aem alkalmas a valóság ábrá-
zolására, hanem atatak lényeges leegyszerűsítését igény-
li, - ezért esetleg gyakorlatilag használhatatlan vagy
félrevezető eredményhez vezet -, kénytelenek vagyunk
diszkrét vagy vegyes modellt alkalmazni.

A modellek aazerint la osztályozhatók, hogy paramé-
tereik pontosan meghatárakató konstansok vagy olyan
vélatlentől fOggS Mennyiségek, amelyek értékét oaak
biiojjyoa /egynél kisebb/ valósaínúsággel txtajsk megha-
tárocBi. Ilyen saempontből megkaiönbSatetflakt

a., Doterainigatikua modelleket, aadkor a modell
t i é t l ű h t á r h t o kegyértelműen meghatározhatók.

%., S«|oehssatilEUB modellekett amiker a mod«ll pára-
mét er ei"^eTeiIeE;EoT™?Sggomenny i ségek.

Akkor is satochasstikus modellről beszélünk, ha vala-
mely modell paramétereinek osak egy része véletlentől
függő* mennyiség.

A gazdasági pí blémáfc természete általában sztochasz-
tikus jellegű, tehát a gazdasági vizsgálatok során a
sztoohasztikuc modelleknek van prioritásuk. Pl. a mező-
gazdaságban nass tudjuk pontosan megadni a várható termés-
átlagot, a várható teljesítményadatokat és költségadato-
kat, hanem azok alakulása számos tényezőtől függő valószí-
nűségi változóként tekinthető. A sztochasztikus modellek
problémái assonban még távolról sincsenek olyan szinten
felderítve, mint a determinisztikus modellek problémái -
bár az utóbbi időben a kutatás e téren is nagy lépésekkel
halad előre-, ©sért a gyakorlatban jelenleg általában a
determinisztikus modelleket alkalmazzuk.

Az optimális programok maghatározásánál alkalmazott
módszer szerint megkülönböztetünks

a., Statikua. b., Dinamikus modelleket.

E megkOlöabeatetéa kizárólag a módszer matematikai
struktúrájára vonatkozik és nem a modell közgazdasági
tartalaáreu Kgzgazda&ági szempontból dinamikus probléma
ugyanis vizsgálható etatikus módszerrel ie, viszont köz-
gazdaságilag statikus probléma vizsgálatánál alkalmazunk
dinamikus módszert is.
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1.6. Gazdasági feladatok modellezése

A gazdasági feladatok modellezését az operációkutatási mód-
szerek közül a jelenlegi gyakorlatban leginkábt alkalmazott
matematikai programozás leegyszerűsített módon történő bemu-
tatásával érzékeltetjük. Eazel analóg módon fogható fel ál-
talában az operációkutatási módszerek alkalmazása, természe-
tesen a gazdasági probléma és az alkalmazott matematikai
módszer sajátosságainak figyelembevételével.

Tegyük fel, hogy valamely mezőgazdasági vállalat n-féle
tevékenységet folytathat. Egyelőre nem vizsgáljuk e tevékeny-
ségek konkrét tartalmát, csak megjegyezzük, hogy e tevékenysé-
gek jelenthetik valamely termék termelését, valamilyen szol-
gáltatás ellátását, beruházási tevékenységet, stb. valamilyen
módon folytatva.

A tevékenységek - egyelőre ismeretlen - szint.iét jelöljük
x,, Xg, «.., x-el« Ezek alkotják a matematikai modell válto-
zóit. E szerint x. jelenti a j-edik tevékenyság /j=l, 2, ...,
n/ szintjét. A ''vállalat a tevékenységeket bizonyos céllal
végzi. A cél különböző lehet, pl. minél magasabb jövedelem
elérése, az export fokozása, vagy az import csökkentése,
stb. Tegyük fel, hogy példánkban a tevékenységek célja minél
nagyobb jövedelem elérése. Nyilvánvaló, hogy a megtermelhető
vagy realizálható jövedelem függ attól, hogy a vállalat a
különböző tevékenységeket milyen szinten és milyen arányban
folytatja, azaz ha a megtermelhető vagy realizálható jövedel-
met z-vel jelöljük, annak nagysága az x., változók függvénye
vagyis J

/X.X.I Z :

Aa így megfogalmazott függvényt célfüggvénynek vagy haté-
konysági függvénynek nevezzük. Természetesen a vállalat a cél
minél Jobb megvalósítására törekszik, pl. minél több jövede-
lem elérésére, vagy minél tSbb export termák előállítására,
vagy minél kevesebb import anyag felhasználására, stb. Az
x l * X 2 ' •"' ^n v a^-' í ; o a° í c értékeit tehát ugy kell meghatároz-
nunk, hogy a célfüggvény azok mellett a legnagyobb, vagjr a
legkisebb értéket vegye fel, vagyis keressük a célfüggvény
maximumát vagy minimumát, azaz szélső /extrém./ értékát, azaz

A. 2 . / z = £/x~, Xo, „„., x./ = extrém.

A különböző tevékenységek földterületet, munkaerőt, eszkö-
zöket és anyagokat igényelnek. A rendelkezésre álló földterü-
letet, munkaerőt, eszközöket és anyagokat általában termelé-
si erőforrásoknak, vagy egyszerűen erőforrásoknak fogjuk
nevesni.



- 22 -

/Egyelőre ezek részletesebb vizsgálatától eltekintünk./ Az
erőforrások egy része korlátozott mennyiségben áll rendelke-
zésre, vagyis azok felhasználható mennyisége adott. Jelöl-
jük az r-edik erőforrásból rendelkezésre álló mennyiséget
br-rel.

Az erőforrások felhasználására mérlegeket írunk elő.
A mérleg egyik oldalán jelöljük az adott erőforrásából a
szükségletet, a másik oldalán pedig az abból rendelkezésre
5.1 ló mennyiséget. Mivel a különböző erőforrásokból felme-
rtiiő szükséglet szintén az i. értékek függvénye, az x., ér-
tékeket úgy kall megválasztani, hogy a mérlegek két oldala
között megfelelő, általunk előírt reláció legyen. Előírhat-
jak, hogy a mérleg két oldalán levő mennyiségek pontosan meg-
egyezzenek, vagy, hogy az egyik oldalon levő mennyiség nem
lehat több, mint a másik oldalon.

E szerint tehát keressük as z^, iCg, ..., X Q változóknak
azokat az értékeit, amelyek mellett a oélfUggvény extrém
értéket /maximumot vagy minimumot/ vesz fel, azonban az
x-̂ , Xj, ..., X Q változóknak ki kell elégíteniük még bizo-
nyos mellékfeltételeket. amelyeket mérlegegyenletek

vagy mérlegegyenlőtlenségek

/1.4./ ^i/^l* *2» •••• *j/ <Lbr»

illetve

A.5./ $i/=\* *2, •••» 3^/ > \,

alakjában fogalmazhatunk meg.

Az így megfogalmazott mérlegegyenleteket, illetve mér-
legegyenlőtlenaegeket mérlegfelteteleknek, vagy korlátozó
feltetelekart; szoktuk nevezni.

Az s^, Xg, •-.., Xjj változóknak ki kell még elégíteniük
az un. határfeltételeket. /Oskar Lange: Optimális döntések.
Közgazdasági és Jogi Könyvkiadó, Budapest, 1966. 51. o./
vagy nemnegatívitási feltételeket, azaz .

/1.6./ x x, Xg, ..., XJJ > 0.
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A /l.l./ formulában kizárólag azt fogalmaztuk meg, hogy
a célfUggréoy értéke /pl. a jövedelem tömege/ a különböző
tevékenységek méretétől függ /a kOlünbSsó* t«nék«kb51 tar-
melt mennyiségektől, a szolgáltatások kiterjedésétől, stb./
e a /I.2./ formula szerint azok szintjét ágy kell megvá-
lasztani, hogy a célfüggvény extrém értéket vegyan fel
/pl. a lehető legnagyobb jövedelmet érjtik el/. E formulá-
ban egyelőre még azt sem konkretizáljuk, hogy a célfUsg-
vány srtéke /z/ hogyan, milyen formában függ az x., vál-
tozóktól. •>

Kizárólag e célfüggvény alapján esetleg az mutatkozna
célszerűnek, hogy a vállalat csak egyféle tevékenységet
folytasson, esetleg minden határon túl növekvő mértékben.
Azonban mint arról már szó volt, a különböző tevékenysé-
gek erőforrásokat igényelnek, amelyekből korlátozott
mennyiségek állnak a vállalat rendelkezésére, behatárolva
a különböző tevékenységek lehetséges méreteit. Pl. ha a
vállalatnak adott földterület áll rendelkezésére, s azt
maradék nélkül fel kell használnia a termelés céljára,
ez a területmárleg egyensúlyának biztosítását kívánja
meg. A teriiletszükséglet szintén az i, változóktól függ,

/valamilyen formában/, a ez képezi a mérleg egyik olda-
lát (db./x,t Xo, ..., 3L,/)>

 s meghatározott mennyiségű
teriilet áll rendelkezésre /b^J, ami a mérleg másik olda-
lát adja. A mérleg kát oldala között meghatározott egyen-
súlyt kell biztosítani, azaz ha a terület pontos felhasz-
nálását kívánjuk, a mérleget mérlegegyenlet alakjában kell
megfogalmazni /1.3./»

A WB2úEa.tsx&~ és eszközfelhasználásra vonatkozó mérlege-
ket viszont általában egyenlőtlenség formájában fogalmazzuk
meg, vagyis nem írjuk e!5, hogy pl. minden hónapban ponto-
san és maradák nélkül fel kell használnunk a rendelkezésre
álló munkaerőt, hanem csak azt kötjük ki, hogy nem hasz-
nálhatunk fel több munkaerőt, mint amennyi rendelkezésre
áll, aaaa a munkaerő felhasználására egy felső határt.
felső korlátot írunk elő, de lehetővé tesszük, hogy azt
ne használjuk fel teljes mértékben. /Mezőgazdasági válla-
latoknál általában lebaíetlen olyan tervet összeállíta-
ni, amely minden hónapban a muaicaerő teljeB ás maradékta-
lan felhasználását biztosítja. S követelmény modellbe
építése megoldhatatlan problémához vezetne,,/

Más esetben - mist később látni fogjuk - előírhatunk
alsó korlátot is /I.5./, pl. megkívánhatjuk, hogy bizonyos
termetekből, vagy termékcsoportokból legalább egy meghatá-
rozott n-ennyiséget termelni kell.
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A /I.6./ formulában előírtuk;, hogy az ÍJ értékek nem le-
hetnek negatív mannyiságCiSs A.-7állalatveze$ő természetesnek
tartjas hogy nem termelhet pl.-100 hektáron búzát vagy kuko-
ricát, vagy nem adhat az állatok elé -10 kg-ot valamely ta-
kanaányf éleságből. A matematikában azonban valamely egyenlet-
rendszer vagy egyéniőtlenségrendszer megoldása negatív érté-
ket is eredményezhet, illetve, ha ez nem kívánatos, vagy nem
engedhető meg, azt külön feltételként kell előírni.

A mérlegfeltétel-rendszer /mérlegegyenletek áa egyenlőt-
lenségek/, vagy másként a korlátozó feltételek rendszere
í/1.3./ - /1.5./) ás a határfeltételek /l.b./ általában az
x_. változók többféle variációját megengedik, azaz többféle

megoldás is lehetséges. Ezek azonban nem feltétlenül egyen-
értékűek, s célszerű kiválasztani közülük azt, amely bizo-
nyos cél, vagy célok szempontjából leginkább megfelel a gya-
korlati megvalósításra. A kiválasztás kritériumát a célfügg-
vényben fogalmazhatjuk meg.

A gyakorlati alkalmazás során - mint látni fogjuk - nem
egyszerű probléma a célfüggvény közgazdasági tartalmának
meghatározása.

A matematikai programozás, s ezen belül a célfüggvény
általános problémáját igen világosan fejti ki Oskar Iange.
A matematikai programozás elméletét a racionális cselekvés-
ről saóló általános tudomány részének tekinti, azaz a
prasgológtáaoz sorolja. /Oskar Lange idézett könyve

xra.5. ©./'
A gazdasági programcaás szempontjából legfontosabb praxeo-

lógiai eljárási elvnek a racionális gazdálkodás vagy a gazda-
ságosság elvét tekinti, emelynek kát változatát különbözte-
ti megs

a. A legnagyobb eredmény elve; ha adott eszközráfordítás
asllett a itusött eál assrlaalis fokát érjük el.

b. A le^kisga'b csskő'sgáfos-dítág. vagy a» oszkSggkkel ym.16
takaréfeo'sgag' elves"EsTag adott céli /vagyis a cél előre meg-
fcatáresott fokát/ a legkisebb eszközráfordítással érjük el.

A gsafiaságessás elvánek kát változatát Oskar ^aage egyen-
értékűnek tekinti. "Ki lehet mutatni, hogy a racionális gaz-
fiáliiofiás elvánek saiaakát váltosata egyenértékű. Lényegében
a racionális gazdálkodás elvének második változatát alkal-
aazva - adott eszköakéssiet mellett - végareűiaányben a cél
megralÓBÍtáaának aasirsális fokát érjük el. Ha ugyanis keve-
sebb assfcöst taassnálusk s osl megvalósítása meghatározott
fokának elárésére, vagyis 'bisonyos mennyiségű eszközt meg-
takarítun'üs akkor aszal a cél megvalósítási í'ofcát megfelelő-
en növelni lehet ás ezen es úton elérhetjük annak maximumát."
/Oakar Lange idézett koayvá 13. o./
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Helyteleníti a gazdaságosság elvének olyan megfogalmazását,
amely a cál legnagyobb megvalósítási fokát kívánja elérni
a legkisebb eszközráforditás mellett. Valóban, az utóbbi
megfogalmazás ellentmondásos és Oskar Lange eljaélete a
gazdaságosság elvéről ás a két változat egyenértékűségéről
előrelépést jelent.

A matematikai programozási modell általános megfogalma-
zása során nem adtuk meg konkrétan, hogy a célfüggvény
vagy a mérlegfeltátelek milyen íüggvénytipust képviselnek,
csupán azt tüntettük fel, hogy itt valamilyen függványkap-
csolat van.

Mind a célfüggvényben, mind a mérlegfeltételekben sok- •
féle függvénytipus azóba jöhet, azonban egy bonyolult függ-
vényrendszert tartalmazó modell gyakorlati tervezésben való
alkalmazásának - legalábbis jelenleg - nincsenek meg a fel-
tételei. Egyszerűségénél, könnyebb kezelhetőségénél és
megoldhatóságánál fogva, ma a lineáris programozási modell
az, amely a gyakorlatban szélesebb körben alkalmazható él"
elterjeszthető, másrészt nagyon sok nemlineáris feladat
is visszavezethető lineáris programozási feladatra, illet-
ve megoldható valamilyen módon lineáris programozással.

Ha mind a célfüggvény, mind a mérlegfeltételek lineári-
sak, azaz a

és

A.8./ a r l x l + ar2x2 + ••• + am 3 tn * br»
illatve

A.9./ arl xl

vagy

forjaábau. adottak, vagyis a A«7«/ - A.10./ a váltósokat
első tokon tartalmassal;., akkor lineáris programogási modell-
ről bssEst'lönk. Ellenksső esetben Bealineárís progaagzásT
gcgellel állunk ssasísen.

A lineáris prograaosás mindenek előtt aat a feltstale-
t tar-jalsazza, hogs a p., -is ar^ fcocfficieasek fcoaatans

értékek ss nsa íiiggaaSi aa s. értéke': váltosásától* A válla-
la t i íert'aBáa szempontjából néswe ez aat a feltáteleacst
jelenti, hogy adott termékből bármilyen mennyiséget is ter-

lSk, ' egységnyi termái; pl. zaiadíg ugyanaisnyi jövedelem
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realizálását teszi lehetővé, a különböző eszközökből és
anyagokból e^yságcyi termák előállításához mindig ugyan-
annyit használunk fel, illetve egységnyi termék előállí-
tása mindig ugyanannyi munkaerőt, gáp_i munkát igényel,
stb, Indokolt az a nézet, hogy a valóságban a problémák
nem ilyen egyszerűek, általában nemlineáris formában
Jelentkeznek. Ha a gyakorlatban mégis a lineáris prog-
ramozást alkalmazzuk, akkor tudatában kell lennünk an-
nak, hogy számításaink csak annyiban tükrözik a valósá-
got, amennyiben a linearitás - jobb híján - mégis elfo-
gadható. Ha ez nem áll fenn, kénytelenek vagyunk nemline-
áris programozási modellt alkalmazni.

Tekintsük az előbbiekben megfogalmazott lineáris

programozási modellt. Tegyük fel, hogy p,, pp, ...,

p az első, a második és így tovább, az n-edik termék

egységnyi termelése /l t, 1 ha, stb./ során nyerhető

jövedelmet jelenti, míg mint ismeretes, az x-,, x~,

».., 3L, a különböző termékekből termelendő mennyiságe-

ket szimbolizálják.

Ha az első termák egységnyi mennyisége /l t, 1 ha

tsrmelése/ p-̂  mennyiségű jövedelem megtermelését, illet-

ve realizálását teszi lehetővé, s ha az első termékből

x-| mennyiséget állítunk elő, akkor természetesen az

első termák termelése során Vj^i nagyságú jövedelemre

számitűatuak. Ha a szorzatokat valamennyi termékre vo-

natkozóan képezzük, megkapjuk, hogy a kUlönböző termé-

kek tenaeláse során - adott mennyiságeket termelve

~ ineasyi jövedelem érhető el.

A termékenként nyerhető jövedelmek összege az adott
vállalat által elérhető jövedelem tömegét adja, azaz
a vállalati összes jövedelem tö'zaege /z/, a /l.í./ sze-
siat

/lollo/ Z = B-|~- + PciSg + ••• + P J J ^ J

vagy rövidebben felírva n

/1.12./ z = ' ) p-x.;.
ü ó

3=1
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Ha pl. a r l az első termák egységnyi megtermeléséhez
szükséges munkanapok: számát jelenti az r-edik hónapban
és az első termékből x^ mennyiséget állítunk elő, akkor
ehhez nyilvánvalóan az r-edik hónapban a^x^ munkanap-
ra lesz szükség. Ha e szorzatot minden termékre vonat-
kozóan elvégezzük, megkapjuk, hogy a különböző termékek
tervezett mennyiségének megtermeléséhez a r-edik hónap-
ban hány munkanapra van szükség. Ezek összegezése az
adott hónapban a termeléshez szükséges munkanapok összes
mennyiségét adja, azaz az /1.9./ formulát felhasználva.

vagy rövidebben

/1.14./ l a_,x,

A munkaszilk3sglet nem lehet több a rendelkezésre
álló, illetve teljesíthető munkanapok számánál, vagyis

< b r

Hasonló módon fogalmazhatjuk meg a gépimunka-msrle-
geket, anyagmérlegeket, atb., amelyek részletesebb tár-
gyalásától e helyütt eltekintünk.

1.7. Egyszerű példa a lineáris programozás
szemléltetésére

A toyábbiak során egy nagyon leegyszerűsített feladat
alapján vizagáljuk meg a lineáris programozás alkalaazá-
si lehetoségst, megvilágítva az alkalmazás gazdasági-
hátterét,
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TátelezzUk fel, hogy valamely mezőgazdasági vállalat
1 000 ha területtel rendelkezik. A rendelkezésre álló
területen négyféle árunövány termelésére van lehetőség,
amelyeket jelöljünk az abc kezdő nagybetűivel, tehát
A, B, C, D-vel. Rendelkezésre áll a négyféle árunövány
termelésének kidolgozott technológiája.gamely tartal-
mazza azok termelésének jövedelemszámításait is.

A problémát leegyszerűsítjük és feltételezzük, hogy
a termeléshez csak munkaerőt használunk fel. /A többi
tényező vagy korlátlan mennyiségben áll rendelkezésre
vagy egyszerűen e helyütt vizsgálatuktól eltekintünk./
A munkaerő-felhasználás idényszerűsége azonban szük-
ségessé teszi annak vizsgálatát, hogy az év különböző
időszakában hogyan alakul a munkaerő-szükséglet. E
tekintetben legalább havi részletezésre van szükség. ~"
Az egyszerűság kedvéért példánkban csak két munkacsúcs-
időazak vizsgalatát végezzük el, azaz csak az I.,
illetve a II. időszakot különböztetjük meg.

A technológiákból megállapítható, hogy az A termék
1 hektáron való termelése az I. csúcsidőszakban 1, a
II. csúcsidőszakban 4 munkanapot igényel ás 1 hektáron
2 700 Ft jövedelem érhető el. Ugyanezen adatok a B ter-
mák termelésére vonatkozóan 4, 2 és 2 700, a C termák
termelésére vonatkozóan 4, 6 és 2 900, illetve a D
termék termelésére 2, 10 és 3 300. Foglaljuk ezeket az
adatokat áttekinthető formában az 1. táblázatba.

Termékek technológiai és jövedelemadatai 1 ha-ra

1. sz. táblázat

Megnevezés

Teriiletszükságlet, ha
Munkanapsstikséglet
az I. csúcsidőszakban

MunkanapszUkséglet
a II. csúcsidőszakban

Jövedelem, Ft

A
1

1

4

2 700

B
1

4

2

2 700

C
1

4

6

2 900

D
1

2

10

3 300
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Most az a feladat, hogy készítsük el az adott mezőgazda-
sági vállalat termelési tervét.

Először oldjuk meg a feladatot pusztán logikai kalkulá-
ció alapján, ahogyan azt a jelenlegi gyakorlatban is csi-
nálják. Ennek keretében mindenekelőtt el kell döntenünk,
hogy melyik terméket hány hektár tertileten kívánjuk ter-
melni, azaz az 1 000 ha területet elosztjuk a négyféle
árunövény termelésére. Az elosztást azonban - mivel a jö-
vedelem nagysága nem közömbös a vállalat szempontjából
- ÓSJ igyeksztink megoldani, hogy az 1 000 ha területen mi-
nél nagyobb jövedelem elérése váljon lehetővé. Eaért ter-
mészetesen az egységnyi területen nagyobb jövedelmet adó
termák termelését előnyben részesítjük a kevesebb jövedel-
met biztosító termékkel szemben.

A táblázatból kitűnik, hogy 1 ha-on legnagyobb jSvedel-
met a D termék termelése biztosít. Igyekszünk tehát a D
terméket minél nagyobb területen, mondjuk 400 ha-on termel-
ni. Az 1 ha-on termelhető jövedelemtömeg szempontjából a
második legjobb termék a C termék, termeljük ezt, mondjuk
300 ha-on. Az A és B termék 1 ha-on termelve, azonos tömegtt
jövedelem elérését tessi lehetővé, azonban az A termék
termelése előnyösebbnek látszik, mert kevesebb munkaerő-
ráfordítást igényel, ezért mondjuk az A terméket 200, a
B termákat pedig 100 ha-on termeljük. Ezzel az 1 000 ha
területet a négy növény termelésére elosztottuk a követke-
zőképpen. :

A termék 200 ha
B termék 100 ha
C termék 300 ha
D termák 400 ha

Összesen 1 000 ha 100 %

Előre nem tudjuk, hogy az így meghatározott termeléai
szerkezet az adott vállalatnál megvalósítható-e vagy sem.
Erről csak azután tudunk Bieggyőzőöni, ha elkészítjük a kü-
lönböző /serlegeket, ás az adott termelési szerkezet alapján

h t ó J j ö 3 j ^ S t ás megvizsgáljuk, hogy a tervezett

jcyagokkai/ is a;: elérhető jövedelmei
tartjuk-e. £! vizsgálathoz tehát el kell készítenünk a kü-
IBnbösiS serlegeket és xs.eg kall határoznuak aa elérhető
vállalati jövedelmet, A mérlegek sa jövedelemszámítás elké-
szítést viszonylag e^ysaerű, minuöasze a technológiai adato-
kat kell z'jb-'s?.orozni a termelési szerkezet adataival éa az
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így kapott szorzatokat kell összegezni. A fentiekben
meghatározott termelési szerkezet, valamint az 1. sz.
táblázatban rögzített technológiai ás jövedelmi ada-
tok alapján tehát a következő számításokat kell el-
végeznünk:

Termetmérleg

1 • 200 +1 • 100 + 1 • 300 + 1 • 400 = 1 000 ha,

Munkanap-szükséglet az I. csúcsidőszakban

1 • 200 + 4 • 100 + 4 • 300 + 2 • 400 = 2 600
munkanap.

A.16./
Munkanap-szükséglet a II. csúcsidőszakban

4• 200 + 2 • 100 + 6 • 300 + 10 • 400 = 6 800
munkanap.

Elérhető .-jövedelem

2 700 • 200 + 2 700 -100 + 2 900 • 300 + 3 300 •

• 400 = 3 000 000 Ft . .

Számításaink alapján kitűnik, hogy az adott techno-
lógiai adatok alapján a tervezett termelési szerkezet
megvalósításához 1000 ha terület, az I. csúcsidőszak-
ban 2 600 munkanap, a II. csúcsidőszakban 6 800 mun-
kanap szükséges és az elérhető jövedelem 3 000 000 Ft.
Most azt kell megvizsgálnunk, hogy a 2 600, illetve
6 800 munkanap biztosítható-e az adott vállalatnál
ás megvagyunk-e elégedve az elérhető jövedelemmel.
Amennyiben a szükséges munkanap nem áll rendelkezésre.
hanem az adott vállalat ennél kevesebb munkaerővel
rendelkezik, vagy a jövedelmet kevésnek tart.luk, akkor
yagy a technológiát kell megváltoztatni, vagy a terme-
lési szerkezetet, vagy mindkettőt. Ebben az esetben
viszont ismét el kell végeznünk a mérlegszámításokat
ás újra magvizsgálni, hogy az így előállított tervválto-
zat kapacitásigényét tudja-e a vállalat biztosítani,
illetve az elérhető jövedelem elfogadható-e a vállalat
számára. A termelési szerkezet és a technológia változ-
tatását mindaddig kell végeznünk, amíg egy felyan terme-
lési tervhez Jutunk, amelyjaen valamennyi mérlegünk elfo-
gadható a vállalat számara.

Egyszerűsített példánkban viszonylag könnyű feladat
volna több tervváltozat előállítása és vizsgálata de
képzeljük el egy vállalat komplex tervét, amikor nem-
csak négy áíunövényt kell figyelembe venni, hanem az
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összes, az adott vállalat körülményei között termelhető
árunövényt, a zöldság-, a szőlő-, ás a gyümölcs termelést,
a rét- és a legelőgazdálkodást, az állattenyésztést, a ta-
karmány termelést ás -vásárlást, stb. Sőt egy-egy termék
termelése többféle technológiai változat szerint is lehet-
séges. De a munkaerőt sem két időszakban, haneE legalább
12 időszakban /havonkánt/ vesszük figyelembe. Vizsgálnunk
kell a gyakorlati tervezés során a traktormérlegeket lega-
lább típusonként szintén 12-12 időszakot véve alapul. Ha-
sonlóképpen tekintetbe kell venni más gspimunka-mérlege-
ket is /pl. kombájn, öntözőgép, munkagép, atb./« anyagmér-
legeket is, takarmánymérlegeket is stb.

Ha- összeállítottuk ezeket a mérlegeket, kideríti, hogy
egyik-másik mérlegben a szükséglet és a kapacitás nincs
összhangban. Most változtatjuk a termelési szerkezetet
vagy a technológiát, vagy mindkettőt, összeállítjuk a mér-
legeket, s újra nincs minden mérlegben összhang, sőt le-
hetséges, hogy azáltal, hogy megteremtettük valamely mérleg
összhangját, egy má3ik mérlegben azt felborítottuk. Nagyon
sokszor kellene a tervet átdolgozni, hogy valamennyi mér-
legben összhangot teremtsünk, /l.ábra-, 37. old./
Krre a mezőgazdasági vállalatok vezetőinek aligha van le-
hetőségük, ezért sok esetben némi javítgatással csak a
mérlegek látszólagos összhangját teremtik meg. Mint lát-
ni fogjuk, a matematikai programozás egyik fonto3 előnye
éppen az. hogy" a modellben figyelembe vett összes mérle-
gek összhang.iát biztosítja.

Térjünk most vissza egyszerű példánkhoz. Adjuk meg a
logikai kalkulációnak azt az előnyt - bár gyakorlatilag
ez így soha nem sikerül -, hogy feltételezzük, olyan ter-
vet sikerült az első lépésben készítenünk, ahol a mérlegek
összhangban vannak, mondjuk az I. csúcsidőszakban pontosan
2 600 munkanap, a II. csúcsidőszakban pedig pontosan 6 800

munkanap ás 1 000 ha termőterület áll a vállalat rendelkezésé-
re. A logikai úton összeállított tervet tehát mindenkeppen
jónak, illetve elfogadhatónak tarthatjuk, hiszen valamennyi
mérlegünk összhangját biztosítottuk és a tervezés során
nagymértékben érvényesíteni tudtuk azt az elvet is, hogy
minél jövedelmezőbb termelési szerkezetet tervezzünk meg.

Tegyük fel azonbans hogy a vállalat ennek ellenére sze-
retne meggyőződni arróls iiogy van-e lehetőség aa előbbi
tervnél jobb, jövedelmezőbb terv összeállítására. A leckét
úgy adja fel az operációkutatónak, hogy az adott termelés-
technoló.aiákat véve fi.gyelembe, készítsen egy olyan terme-
lési tervat, amely pontosan 1 00"0" ha terület hssariosítáaát
teszi lehetővé, a az í, csácsiaoszak pontosan 2 oűO~munka-
nap. a II. esúcsidosiákban pontosan 6 800 munkanap~5elhasz-
nálásával jár,, de a lehető legnagyobb jovedelmezossg eléré-
sét biztosítja.
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Az operációkutató as így megfogalmazott feladatból in-
dul ki/Adottnál: tekinti teiáí a termeléstechnológiai ada-
tokat s valamint a ísnaelssi forrásokra megadott adatokat
ás keresi azt a termelési szerkezetet, amely 1 000 ha te-
rület, 2 600, iiletTe 6 800 munkanap felhasználásával a
legnagyobb jövedelmet biztosítja. Ennek alapján az
/1.16./ formulát ágy alakítja át, hogy az egyes termékek
termelésére felhasznált területet ismeretlenként kezeli,

i as A termák termelésére fordított területet

x--gj'3ls a 3 termék termelésére fordított Xp-vel, ás így

tovább, x~-mal, illetve x^-gyel jelöli. Ennek megfelelően

;-. /1.16./ formulát a következőképpen alakítjuk át: /Azokat

a konstansokat, aaelyeknek ártske 1, természetesen elhagy-

hatjuk, most a könnyebb követhetőség érdekébea tüntettük

fel./

Is , + Ixj + lx, + Í z . = 1000 ha

*lunkaaap-ggükaégieti msrleg az I . csúcsidőszakban

IXT + 42^ + 4s-j --- 2s 4 = 2600 munkanap

A. 17./
Mtmkanats-szükaégleti mérleg a II. csúcsidőszakban

4s^ + 2s, + Ss, •;- 10:::.. - 6800 munkanap

27G0s, + 2700x0 + 2900%, + 3300s_,

As /1.17./ fosyauia aegíolel as /1.16,/ formulának,
ifjak EOet e termeiáai gsei-keaetet; egyelőre ismeretlen-
h-í-at i:sBeljük»

r.dat megolfiásáaes tehát resdslkezünk egy négyis-
^ l t b ő l á l l ó ű e l /később l á i

leginkább7 g ^
t ágj- Sceli megoldanunk,

aúl?.i^- -;- 'igy -tifíS"••'•"-•-•:* . ;-- cálS2gg?ány/ aasiaiaiaát ke-
ressük,

As /I.,!?<./ fslate".: _áa~ait foglaljuk táblásaiba,
ahol e túloldal i OSSIODCSS feltüntetjük Ü sorok megneveaé-
aét,'xsi~á a további, osslev-h S.ÍÍ ©gyes termékek: egységnyi
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mennyiségre/l ha-on történő termelésére/ vonatkozó ér-
tékeket /technológiai koefficienseket és fajlagos jöve-
delemmutatókat/, illetve az utolsó oszlop a vállalat
/Az utolsó oszlopban most csak egyszerűen vállalat meg-
nevezést alkalmazunk, mert az adatok az egész vállalat-
ra vonatkoznak, itt még csak a rendelkezésre álló
erőforrásokat, a későbbiekben adott termék vagy termé-
kek terhelésének terUletét, s a vállalat várható jövedel-
mét fogjuk itt megtalálni./ egészére vonatkozó kapacitás-
kor lát okát tartalmazza. Az x-,, 30,, i-,, i. szimbólumokat

- amelyek a különböző termékek termelési szintjét je-
lentik - a fejrovatban emeltük ki. / 2. sz. táblázat/

A 2. sz. táblázat tulajdonképpen egy olyan kiinduló
tervet reprezentál, amikor még semmit nem termelünk,
minden vállalati erőforrást tartalékolunk és a vállala-
ti jövedelem, mint ast az utolsó oszlop célfüggvény-
adat a mutatja, jelenleg még 0. Ezt a táblázatot induló
táblázatnak szoktuk nevezni.

Induló táblázat

2. sz. táblázat

Megnevezés

Terület, ha

Stunkanap az I.

csúcsidőszakban

Munkanap a II.

csúcsidőszakban

Jövedelem, Ft

*1
termék

1

1

A

termék

1

4

2

2 700i 2 700

X3
termék

1

4

6

2 900

X 4
termék

1

2

10

Vállalat

1 000

2 600

5 SCO

3 300| 0

A továbbiakban lépésről lépésre újabb tervváltozato-
kat fogusk előállítani aiadaddig, amíg az adott feltéte-
lek kösötri legnagyobb jövedelmet biztosító tervliOE nem
jutunk*

A 2. ss. táblázatból kitűnik, hogy hektáronként a D
termák ad. legtöbb jövedelmet, tehát természetes, hogy
ennek aiiál nagyobb területen való termelésére törekszünk.
Kérdés asoaban, hogy a termeléshez szükséges erőforrások-
ból ren&alkesásre álló meanyissgek / terület, munkaerő/ a
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a D termék termelését hány hektáron teszi lehetővé.
Bzt megkapjuk, ha a jobboldali oszlop adatsit /a rendel-
kezésre álló kapacitásokat/ elosztjuk a D termék oszlo-
pához tartozó adatokkal /a 3 termék fajlagos kapaeitás-
silkaágletével/. azaz

1 000

2 600

6 800

1 = 1 000

2 = 1 300

10 = 680

Mivel egyik erőforrásból sem használhatunk fel többet,
mint amennyi rendelkezésűnkre áll, nyilvánvalóan a terme-
lést a szűk keresztmetszethez kell igazítanunk, tehát a
B terméket legfeljebb bSÜRaa, terBleton termelhetjük.

A 33 termék adatait 680-nai szorozva megkapjuk a D
termék 680 ha-on történő termeléséhez szükséges tertile-
tst és munkanap-szüííssgle'CGt,, Ha az így kiszámított sztik-
ségleti adatokat levonjuk c rendelkezésre álló kapacitá-
sokból, megkapjuk azt a területet, illetve munkanapmennyi-
ségeket 9 amelyeket nem használunk fel a D termék 680 ha-on
történő termelése során. E szerint az eddig fel nem hasz-
nált kapacitás a következőképpen alakul:

1 000 - I • 6SG = 1 000 - 630 320 ha

2 600 - 2 • 680 = 2 600 - 1 360 = 1 240 munkanap

aa I. osácsidőssakban

6 800 -10 • 680 = 6 800 - 6 800 = 0 munkanap a

II. csúcsidőszakban

's a negfelelő jövedelem, assz a célfüggvény megfelelő

0 - 3 300 • 68C * - 2 244 000 Ft

termákét teaái 680 ha-on termelve, a II. osáos-

renüalüesásre álló aun'sanauok mennyiségét
tuk ki tsljeaen. AB elsrhs^o jöveáelem 2 244 000 Ft
/ez ugyan minusz előjellel saerepel, amely - mint később
látni fogjuk - csupán esiritásteohnikai okokból adódik,
s azt -1-gyel szorozva pozitív srtsket kapunk, ez az
oka azuaaii is, hogy a tovflbbiakban a -z szimbólumot
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használjuk ss a jövedelem -1—szereset találjuk.

Most az a kérdés, tudjuk-e hasznosítani a még fel nem
használt 320 ha területet és az I. csúcsidőszakban mág
rendelkezésre álló 1 240 munkanapot. Kísáreljiít meg an-
nak hasznosítását a C termékkel. A 0 termék azonban a II.
csúcsidőszakban is igényel munkanapot. így termelése csak
akkor válik lehetővé, ha egyidejűleg osökkent-iük a D ter-
mék termeléséti s ezáltal a II. csúcsidőszakban munka-
napot szabadífunk fel,

A C termák egy ha-on történő termelése a II. csúcsidő-
szakban 6 munkanapot igényel, a D termék pedig 10 munka-
napot. Ahhoz, hogy a C terméket 1 ha-on termelni tudjuk,
a D termék területét tehát 6 : 10 = 0,6 ha-ral csökkente-
ni kell. Miközben azonban a D termék termelését 0,6 ha-
ral csökkentjük, nemcsak a II. csúcsidőszakban szabadí-
tunk fel a termelésből 6 munkanapot, hanem az I. csúcs-
időszakban is 2 • 0,6 = 1,2 munkanapot, s egyidejűleg
1- 0,6 = 0,6 ha területet is, s ezzel egyidőben elveszí-
tünk 3 300 • 0,6 = 1 980 Ft jövedelmet.

Ha már most a C termék 1 ha-on való termelése igényel
1 ha területet, de ugyanakkor a D termák termelésének
csökkentése révén 0,6 ha-t a termelésből felszabadít, a
valóságos területigeny a kettő különbsége, azaz 1 - 0,6 =
=0,4 ha.

Hasonlóképpen a C termék az I. csúcsidőszakban négy
munkanapot igényel, de a D termék termelésének csökken-
tése révén 2 • 0,6 = 1,2 munkanapot felsaabdít, aaaa a
valóságban 4 - 1,2 = 2 88 munkanap-igénnyel lép fel. A
II. csúcsidőszakban a C termék igénye 6 munkanap, de
egyúttal 0,6 • 10 = 6 munkanap felszabadítását is bizto-
sítjuk, azaa a II. csúcsidőszakban a munkanap-igény
6 - 6 = 0 .

Végül a C termék 1 ha-on 3 000 Ft jövedelmet aá, de
ugyanakkor 3 300 -0,6 - 1 930 3?t jövedelem elvesstssst
idézi elő, azaz a valóságban 2 900 - 1 980 = 920 j?t
jövedelmet biztosít.

Termásaetesen a terr ,1aví-;ú;sa nemcsak a C, aar.;:n az
A vagy a 3 termák ter-ESlásbe vonásával is elképzelhető,
sőt leb•;•-. hosr' «r~ ut.'Vii mág célszerűbb, ezért a C
terms:' :ítjuí: as A ás B terasHfcos
tartom - _y aicállított adatoíia'; u 3-
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Első t

3. sz. táblázat

Megnevezés

TerUlet, ha

Munkanap az I.

csúcsidőszakban

x./D termék

termelése ha/

j Jövedelem9 Ft/-z/

*1
termék

0.6

0„2

0,4

1 380

*2
termák

0.8

3.6

0.2

2 040

*3
termfk

0.4

2.8

0.6

Vállalat

320

1 240

680

920 j-2 244 000

A 3» sz. táblázat szintén egy tervváltozatot mutat. A
megnevezés oszlopban a II. csúcsidőszak már neia találha-
tó, mivel a II. csúcsidőszakban a rendelkezésre álló
munkanapot felhasználtuk. Helyette beírtuk a D termék
termelését /x^-et/, amelynek termelésbe vonása tette azük-
ssgessáp illetve lehetővé a II. csúcsidőszakban rendelke-
zésre álló munkanapok felhasználását. A 3. sz. táblázat-
ba foglalt tervváltozat azt mutatja, hoĝ y amennyiben a D
terméfeet 680 ha-on termeljük, a II. csuoaidőszakban ren-
áelkezásre álló munkanapot tsljes mértékben felhasználjuk
a termelésre, de 320 h&~terület és az I. csúcsidőszakban
1 240 munkanap nég kihasználatlanul marad. Ez a termelési
terv 2 244 000 Ft jövedelem elérését teszi lehetővé. Az
z'j_t Sg ^ s X3 oszlcpokhos tartozó adatok az mutatják,, hogy

as A termék 1 ha-on vald termelése 0»4, a B terméké 0.2,
a C terméké 0.6 ka-ral teszi szükségessé a D tennék ter-
laaláeéaek osckkeatéaá's9 így a valóságban az A termék csak
0.6, a 3 termeit 0o8, & C termék pedig 0.4 ha tertlletet
igényal a 320 ha.~b6l shfaos, hogy 1 ha-on termelhessük. Ha-
sonlóképpen a D tarsséfc termelésének csökkentéséből adódó-
an módosul S E I. osuosidőszakban. a munkaigénys valamint
&z slérfeető jövedelem itt. •

A 3. sz. táblásat utolsó sorából kitűniks hogy tz új
bslyseílj®n a B tarmék aá a^ségnyi terlileten legnagyobb
jövedelmete

Újra megkeresetik & soűk ksresstmetszetet, B az egész
táblásatot aa előbüi mőáoa átszámítva új táblázathoz ju-
tunk. /A Bsánítások további bemutatásától eltskintünk,
hissea ©at a későbbiekben résslatesen fogjuk tanulni./
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A számítások során kapott adatokat a 4. az. táblázatban
foglaljuk össze. E szerint a D termék termelése 611.11 ha,
a B terméké pedig 344.44 ha Tolt. EB a termelési szerkezet
lehetővé teszi 2 945 551 Ft jövedelem elérését, s a munka-
erőnek mindkét csúcsidőszakban történő teljes felhasználá-
sát, azonban nem használja fel teljesen a területet, hanem
44.45 ha kihasználatlanul marad.

Második terwariána

Megnevezés

Terület, ha

*2 /B termék

termeléBe, ha/

x. /D termék

termelése,ha/

Jövedelem, Ft/-z/

x l

termék

0.55

0.06

0.39

1 257.6

4.

X3
termék

-0.22

0.78

0.44

-671.2

sí. táblázat

Vállalat

44.45

344.44

611.11

-2 945 551

A táblázatból az is kitűnik, hogy az A termék terme-
lése jövedelmező volna, hiszen az uj helyzetben ha-onként
1 257.6 Ft jövedelemmel kecsegtet. A C termék termelése
az új helyzetben veszteséges lenne, amit a célfüggvény
koefficiensének negatív előjele mutat.

Megkeressük most az A termekre a szűk keresztmetsze-
tet /ez pontosan a terület lesz/ és az előbbi számításo-
kat megismételve, újabb tervváltozathoz jutunk
/5. sz. táblázat/.

Harmadik terwariáns
5. sz. táblázat

Megnevezés
termék

X, /A termei: \

termelése,ha/ j -0.4

Zp /B termék !

tennelsse,ha/ ! 0.3

2i& /E termék

teTr>elése,ba/
Jövedelem, Ft

0,6
-68.26

Vállalat

80.82

339.59

579.59

-3 047 654
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Az 5. sz. táblázat olyan tsrmelési szerkezetet mutat,
amelyben az A terméket 80,82 ha-on, a B terméket 339.59
ha-on, a D terméket 579.59 ha-on /Gyakorlatilag a tizedes
számokat egész számra kerekítjük, itt azonban célszerű
volt két tizedes pontosságot feltüntetni az ellenőrizhe-
tőség érdekében/, termeljük ás az egész elérhető jövede-
lem 3 047 654 Ft. Ezzel optimális megoldáshoz jutottunk,
hiszen - mint a táblázatból kitűnik - a G termék terme-
lése nem lenne jövedelmező /negatív előjel/. Könnyen
ellenőrizhető a mérlegek elkészítésével, hogy ez a ter-
melési szerkezet is pontosan 2 600, illetve 6 800 munka-
napot igényel ás 1 000 ha területet használ fel.

Figyelemre méltó, hogy bár a feladat igen egyszerű
ás a logikai kalkulációval összeállított vetésszerkezet
tervezése során is nagy súlyt helyeztünk a minél magasabb
jövedelem elérésére, a logikai kalkulációval előállított
tervben elért 3 000 000 Ft; jövedelemmel szemben a lineá-
ris programozással összeállított termelési szerkezet
3 047 "• •" 5~*~ "~ "•" ™' •"" *~= """"047 654 Ft jövedelem, azaz 47 654 Ft jövedelemtöbblet
elérését tsszi lehetővé. A gyakorlati tervezés során
többmillió Ft jövedelemtöbbletet tudunk elérni.

Érdekes megfigyelni, hogy a C termék - bár önmagában
vizsgálva a második legjövedelmezőbb termék -, nem szere-
pel a programozással készített termelési tervben. A gya-
korlatban is az a helyzet, hogy gyakran egy termék, amely
önmagában /ágazati szinten/ vizsgálva .jövedelmezőbbnek
muiatkossik. egyáltalán^ nemi biztosa. hogy az egé az vállalati

xefigbV" /A 0 termék' ierEeléae ugyanis ha-onként 68V26 Ft-
tal" "ésSkkentené az elérhető jövedelmet, mint ez az 5. az.
táblázatból kitűnik./

A jsateiaatíkal progyamogáa alkalmaaáaának nagy előnye.
hogy as egyaa ágazatokat nemoaak önmagukban, a vállalaT
komplaxniBaPOl kirapad^a tadjuk vizsgálni, hanem a válla"-

' koaáT^iik'baB ít tudiük tekinteni. Mint az
5__^^w_,r_™_____,v,5l-A-?-_ tervváltozatot most

is több lépéaben állítottuk aló\ de minden lépésben a
modellben levő Ssassas adatot átszámítottuk, egymással
kapcsolatba, SassaíOggésbe nostuk, s a vállalatot tel-
jes kosplesaamában vlssgáltuk.

Egysaarű páldánklsaa könnyen asgtaláltuk annak az okát
is, &©gy a C texaták, amely önmagában vizsgálva, a második
as 1 fea-sa elérlaető jSTadelaia nagyságát illetően, miért
veszteséges aa ®géss vállalati komplexumot tekintve,
illetve a B termék, amely össjaagáoan vizsgálva, 1 ha-on
a legkevesebb jövedelmet adja, miért foglalja el a máso-
dik helyat a vállalat teljes komplexumában. Sekintsük
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meg mégegyszer az 1. sz. táblázatot. A legjövedelmezőbb
a D termék. Munkacsúcsa a II. csúcsidőszakban van. Ugyan-
csak itt találjuk a munkacsúcsot a C termék esetében la.
A II. csúcsidőszakban rendelkezésre álló munkc-spokért
folyó versenyből természetesen a D termék kerül ki gyíz-
tesen, mert magasabb jövedelmet biztosít. A C termék
termelése csak a D termék termelésének nagyarányú csök-
kentése útján lenne lehetséges. Ugyanakkor a B termék
munkacsúcsa éppen az I. csúcsidőszakban van, azaz a D
termékkel jól kiegészítik egymást. Ugyancsak a II. csúcs-
időszakban találjuk az A termék munkacsúcsát is.

Az ilyen egyszerű feladatoknál könnyű áttekinteni az
adatok kapcsolatát, rámutatva arra, hogy az egyes termé-
kek között hol van összhang, vagy ellentmondás. Egy mező-
gazdasági vállalat gyakorlati tervezése során viszont
többszáz sorból és oszlopból álló modellhez is eljuthatunk.
Márpedig többezer adattömeg kapcsolatát és összefüggését
aligha vagyunk képesek pusztán logikai úton áttekinteni.

A mérlegösszefüggések problémáját más oldalról köze-
lítjük meg, ha a tervet csupán logikai úton állítjuk
össze és más oldalról, ha a matematikai tervezés módsze-
rét alkalmazzuk. Ha csupán logikai úton tervezünk, akkor
- mint láttuk -, először megtervezzük a termelési szerke-
zetet és a termelési technológiákat, majd kiszámítjuk a
mérlegek szükséglet! oldalát, végűi ezt egybevetjük a
rendelkezésre álló kapacitás, azaz forrásoldallal. A való-
ságban azonban általában a mérlegek forrásoldala a "meg-
határozott", s olyan termelési szerkezetet kell kialakí-
tani, valamint olyan technológiai eljárásokat célszerű al-
kalmazni, amelyekben a szükségleti oldal a rendelkezésre
álló kapacitásnak megfelel és emellett a legnagyobb válla-
lati jövedelmet biztosítja. A matematikai tervezés alkal-
mas a probléma ilyen megoldására. /Később látni fogjuk,
hogy valójában a termelssi erőforrások mennyisége sem meg-
határozott. A matematikai programozás ekkor is hatékonyan
alkalmazható az erőforrás szükségletnek a termelési szer-
kezettel összehangolt meghatározására./

1.8. A döntési folyamat összehasonlítása

Az előbbiek során egyszerű feladatot oldottunk meg, egy-
részt a jelenleg széles körben alkalmazott tervezési mód-
szerrel, majd pedig a lineáris programozással. Ennek alap-
ján alkalmunk, van arra, hogy a kétféle módszerrel végig-
vezetett döntési folyamatot ábrázoljuk és összehasonlítsuk.

Induljunk ki először a jelenleg általánosan használa-
tos módszerrel végzett tervezésből. Láttuk, hogy ekkor
először számbavessziik a feltételeket, ezután megtervezzük
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a termelési technológiákat, majd pedig a termelési szerke-
aetet. /Természetesen a sorrend meg is fordítható úgy, hogy
először a termelési szerkezetet, majd a technológiákat ter-
vezzük meg. /A következő lépésben a mérleg- ás jövedelem-
vizsgálatokat végezzük el, amikor is felvetődik a kérdés,
hogy a tervezett termelési szerkezet és termelési techno-
lógiák megvalósításához rendelkezlink-e a szükséges kapa-
citásokkal, vagyis a területmérleg a munkaerőmáriegek, a
gép- ás az anyagmérlegek, stb. alapján a terv megvalósít-
ható-e ás a terv szerint elérhető jövedelem nagysága meg-
felel-e számunkra. Ha igen, a termelési folyamat befejező-
dött /STOP/, tehát döntünk a terv elfogadásáról ás megvaló-
sításáról. Ha mérlegek és a jövedelem nem megfelelőek^ ak-
;cor módosítjuk a termelési szerkezetet, vagy a termelési
•technológiákat, vagy nindkettőt és ismét^elvégezzük a mér-
leg- és a jövedelemvizsgálatot. A termelési szerkezet, va-
lamint a termelési technológiák változtatását, a mérleg-
és a jövedelemvizsgálatokat mindaddig végezzük, vagyis az
agssz döntési folyamatot mindaddig ismételjük, amíg olyan
tervhez nem jutunk, amely mind a márlegfeltáteleket, mind
•; jövedelem szempontjából számunkra elfogadható. Az ilyen
-sódon végzett döntési folyamatot az 1. ábra szemlélteti.

A feltételek számbavétele

A.
A termelési technológiák

megtervezése

JL
A termelési szerkezet

megtervezése

Mérlegek és jövedelemszámí-
tások elkészítése

A döntési folyamat vázlata
1. ábra

Egy komplex vállalati tervezés esetén, amikor aoicféle
termelési tevékenységgel ás termelési technológiával,
valamint sokféle mérleggel kell dolgoznunk, a márlegszá-
mítások ás a jövedelemvizsgálat igen munkaigényes és a
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folyamat többszöri megismétlésére a mezőgazdasági Tállala-
tok szakembereinek aligha Tan ideje.

Hint láttuk, másként történik a térrezéa, ha azt mate-
matikai programozással Tegezzük. Az első feladat most is
a feltételek számbaTétele, majd ezt köTeti a termelési
technológiák megterrezése. Ezután összeállítjuk és megold-
juk a matematikai modellt, amelynek eredményeként olyan
termelési szerkezetet kapunk, amely biztosan minden mérleg-
feltétel tekintetében kielégíti előírásainkat, s e felté-
telek mellett a legnagyobb jöTedelaet biztosítja. /Termé-
szetesen ha egyáltalán lehetséges a feladat megoldása,
illetTe ha a célfttggTényben a legnagyobb jöTedelem bizto-
sítását írtuk elő./

Most tehát lényegében nincs szttkség marlegrizsgálatok-
ra, hiszen a mérlegekre előírt feltételek teljesülnek,
- ha Tan a feladatnak megoldása - és nincs szükség jöTede-
lemszámításra sem, hiszen a számítógéptől nyert megoldás
az elérhető jöTedelmet is tartalmazza, sőt biztos, hogy
ez a jöTedelem az adott feltételek között /már mint a mo-
dellbe beépített feltételek között/ maximális. A matema-
tikai programozással megvalósuló tervezés folyamatát a
2. ábra szemlélteti.

A feltételek számbaTétele

Termelési technológiák
megterrezése

A matematikai modell
megszerkesztése

Az optimális termelési terv
kiszámítása

STOP

A döntési folyamat vázlata
2. ábra

Az eddigiekkel kapcsolatban néhány megjegyzést tehe-
tünk: Mindkét terTezési módszer Tizsgálatánal feltételez-
tük, hogy csak egy terrváltozatot készítünk. Valójában
azonban - mint azt majd a gyakorlati alkalmazás során
látni fogjuk -, célszerű többféle terTráltozatot is
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elkészíteni, s azokat összehasonlítva, a gyakorlati meg-
valósításra leginkább megfelelő változatot kiválasztani
és elfogadni. Ez azzal jár, hogy megvizsgáljuk, van-e
lehetősig a feltételek megváltoztatására, vagy számolha-
tunk-e azok megváltoztatásával és ha igen, számbavessztik,
milyen változtatások, illetve változások lehetségesek.
Ezután megnézzUk, hogy a feltételek különböző változása
esetén milyen tervet lenne célszerű megvalósítani. Az így
elkészített tervek összehasonlítása során támpontot kapunk
arra vonatkozólag is, hogy a változtatások milyen ered-
ménnyel járhatnak, célszerű-e a változtatásokat végrehaj-
tani, vagy nem, illetve, ha a változások elkerülhetetlenek
mit kell tennünk, hogy alkalmazkodjunk azokhoz.

Mindkét tervezési módszer alkalmas arra, hogy több terv-
változatot állítsunk elő. A matematikai tervezés azonban
itt még inkább előnyökkel rendelkezik, hiszen elegendő a
modell néhány adatának kicserélése az új feltételeknek meg-
felelően, s a modellt újra megoldva, új tervváltozatot ka-
punk. Másrészt mint látni fogjuk, a matematikai modell egy-
egy megoldása aőrén is több tervváltozatot nyerhetünk.

Eddig a matematikai programozással végzendő tervezés
legegyszerűbb esetét, a lineáris programozást tekintettük

Példaként, s csak az volt a feladat, hogy adott termelésieohnológiák éa adott termelési kapacitások mellett opti-
malizáljuk a termelési szerkezetet. Később találkozni fo-
gunk olyan problémákkal, amikor a lineáris programozással
a termelési szerkezet és a termelési források összefüggő
optimumát kell egyidejűleg meghatározni, illetve olyan
problémákkal is, amikor a termeléstechnológiai terveket
Hintés optimalizáljuk és számítógéppel tervezzük meg
egyidejűleg és összefüggésben a termelési szerkezet és
a termelési források optimumával. Végűi foglalkozni fogunk
nemlineáris modellekkel is. Ilyen komplex és bonyolult
tervezési feladat megoldása a jelenleg általánosan használt
tervezési módszerekkel még nehezebb feladat elé állítana
bennünket. A matematikai programozással történő tervezés-
nek ic«nnagy előnye az is, hogy mind a tervezés adatbázi-
sának megteremtése, mind a modell összeállítása, megoldá-
sa éa a variánsszámítáaok, valamint a döntés után a terv
részletes kimunkálása, Illetve a modellmegoldás részletes
feldolgozása is nagymértékben automatizálható.



- 43 _

2. FEJEZET

LIHEÁRIS ALGEBRA

Lineáris algebrának nevezzük a matematikának azt az ágát,
amely a lineáris terek vizsgálatával foglalkozik. A line-
áris teret egy speciális halmaznak tekinthetjük. Elképzelni
csak az egy dimenziós, két dimenziós és három dimenziós li-
neáris teret tudjuk, de a lineáris tér vizsgálatát az n-di-
menziós lineáris térre terjesztjük ki, amikor is a tér el-
nevezést csak képletes értelemben használjuk.

A lineáris tér fogalmával - illetve azzal, hogy milyen
feltételeket kell adott halmaznak kielégitenie ahhoz, hogy
lineáris térről beszéljünk - a következő fejezetben ismer-
kedünk meg. Előtte meg kell ismerkedni a mátrixokkal és a
mátrixokkal végezhető müveletekkel, azaz a mátrixaritmetiká-
val, a lineáris algebrával.

2.1. Mátrixok

2.1.1. Mátrix fogalma

Foglaljuk táblázatba néhány takarmány fajlagos táplálóa-
nyag tartalmát.

1 kg takarmányban lévő táplálóanyag mennyiségek

Megnevezés

Szárazanyag

HE
Nyers fehérje
Calcium /CaO/
Foszfor /PgOc/

g/kg
HJ/kg
UJ/kg
MJ/kg
gAg
g/kg
gAg

Kukorica-
dara

912,ooo
8,327
7,798
6,68o

91,2oo
o,3oo
2,8oo

Búza-
dara

9o9,ooo
8,236
7,5o8
6,34o

136,35o
o,8oo
3,2oo

6.sz. táblázat

Extrahált
n.forgó dara

9o8,ooo
6,465
6,256
2,992

364,Io8
3,5oo

l o , loo

/HE , ffiU, HE a takarmányozástanból ismert, életfenntartá-
si, tejtermelesi, illetve testtömeggyarapodási energia me-
gajoulban megadva./
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A konkrét adatok vizsgálata nélkül a táblázatról a követ-
kezőket tudjuk mondani:

a./ A számtáblázatnak hét sora és három oszlopa van, te-
hát egy hétszer hármas táblázattal állunk szembe.

b./ A táblázat sorokra bontható, s a aorok mutatják, hogy
egy-egy táplálóanyagból mennyit tartalmaz a különböző takar-
mányok egy kg-ja.

o./ A táblázat oszlopokra bontható, s egy-egy oszlopa fe-
jezi ki, hogy valamely adott takarmány egy kg-jában a különbö-
ző anyagokból milyen mennyiségeket találunk a hozzá tartozó
/a sorokban megadott/ mértékegységben kifejezve.

d./ A táblázatban az adatok, sorok, illetve oszlopok sze-
rint rendezettek.

A matematikában az ilyen táblázatot mátrixnak nevezzük. /A
statisztikában a statisztikai táblázat elnevezést használjuk./

A mátrix természetesen bármennyi sorból és bármennyi oszlop-
ból állhat, általánosan azt mondjuk, hogy egy adott mátrix m
sorból és n oszlopból áll, ahol az m és n bármely természetes
egész szám lehet.

A fentiek alapján az m sorból és az n oszlopból álló szám-
táblázatot mátrixnak nevezzük.

2.1.2. A mátrix jelölése

Egy konkrét számokból álló mátrixot jelölhetünk úgy, hogy
a,z adott konkrét számokat szögletes zárójelben felírjuk:

3 1 4 2

4 7 - 3 7

2 6 5 -8

Azokat az adatokat, amelyekből a mátrix felépül, a mátrix
elemeinek, vagy komponenseinek nevezzük.

Jelölhetjük a mátrixot általánosan, szimbólumokkal, latin
kisbetűkkel is, a konkrét számok felirása nélkül,' a konkrét
számok helyett használt betűszimbólumokat szögletes zárójel-
be foglalva. Ilyenkor mindig jelezzük, hogy az adott szimbó-
lum, azaz a mátrix adott komponense hányadik sorhoz és hánya-
dik oszlophoz tartozik.

A komponensekhez irt első index mindig a sor, a második az
oszlop sorszámára utal. Az adott mátrix tehát m sorból és n
oszlopból áll.
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aln
a2n

"in

Ha meg akarjuk takarítani az összes komponens felírásával
járó fáradtságot és helyigényt, akkor a mátrixot félköréren
szedett latin nagybetűvel /vagy kézirásban aláhúzott latin
nagybetűvel/ szokták jelölni, azaz:

vagy amennyiben jelölni kivánjuk a mátrix típusát /hány
sorból és hány oszlopból áll/, akkor azt a mátrix alatt záró-
jelben megjegyezzük:

A

/m • n/
vagy A

/5 ~ 3/

Jelölhetjük a mátrixot általános elemével is szögletes zá-
rójelbe téve, azaz:

vagy /i = 1,2 ... m/

/j = 1,2 ... n/

2.1.3. A mátrix transzponáltja

A 6.az. táblázatban megadott példában önkényesen válasz-
tottuk, hogy a sorokban a táplálóanyagokat, az oszlopokban a
takarmányokat adtuk meg. Elkészíthető a táblázat a sorok és
oszlopok felcserélésével is, amikor a sorokban a takarmányo-
kat, oszloponként pedig a táplálóanyagokat adnánk meg.

Ha egy inátrix sorait és oszlopait felcseréljük, akkor azt
mondjuk, hogy az adott mátrixot transzponáltuk,s eredményül az
eredeti mátrix transzponált ját keptuk. A mátrix transsponál'i;-
ját a mátrixhoz a jobb felső sarokhoz irt csillaggal, vagy T
betűvel jelöljük, azaz:
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Egy m • n tipusú mátrix transzponáltja n • m tipusú mát-
rix.

Természetesen az A mátrix transzponálnának transzponált-
ja maga az A mátrix,"vagyis

Speciális mátrixok

Zérusmátrix /nullmátrix/

2.1.4.

a./

Olyan mátrix, amelynek minden eleme zérus.
Jele: 0. Pl.:

b./ négyzetes /kvadratikus/ mátrix

Olyan mátrix, amelyben a sorok és oszlopok száma
megegyezik, azaz m = n. Szoktuk nevezni n • n tipusú, vagy
n-ed rendű mátrixnak is. Pl.:

5
3
9

4
-6

1

2
8

-7

A négyzetes mátrix a.. alakú elemeit /bal felaő sarokból

a jobb alsó sarokba húzott átló - un. főátló - mentén
elhelyezkedő elemeit/ diagonális elemeknek nevezzük. Az e-
lőbbi mátrix diagonális elemei tehát 5, -6, -7.

o./ Diagonális mátrix

Diagonális mátrixról beszélünk, amikor a mátrix
diagonálistól különböző elemei zérusok. Pl.:

4
0

0

0

2
0

0

0

7
vagy

6
0

0

0

0

0

0 1
1

0 1
-7

, illetve

a 1 3
0

0

0

a 2 2
0

0

0

aS33
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A diagonális mátrixokat a

1
0
0

0

r-i

0

0
0
1_

"Oil" a 2 2, ... , a^^.

formában is szokás jelölni, amikor csupán, a diagonális eleme-
ket írjuk fel.

d./ Egységmátrix

Olyan diagonális mátrix, amelyben minden diagonális
elem: 1. Jele: E. Pl. :

E =

e./ Permutáló mátrix

Olyan mátrix, amelynek sorait, vagy oszlopait megfe-
lelően átrendezve egységmátrixot kapunk. Pl.:

IŐ 1 0'
0 0 1
1 0 0

f./ Háromszögmátrix /trianguláris mátrix/

Olyan kvadratikus mátrix, amelynek vagy a főátló fe-
letti, vagy a főátló alatti elemei mind zérusok. Az első eset-
ben alsó háromszögmátrixról, a második esetben felső három-
szogmátrixról beszélünk, s szoktuk alkalmazni a 1 ^ és a '"̂ J ,
szimbólumokat is jelölésükre. Pl. :

Alsó háromszögmátrix:

4
3
-2

0 0
1 0
0 5

Felső háromszögmátrix:

2-4 3
0 5 1
0 0 7
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Természetesen az alsó háromszögmátrix transzponálásával a

mátrixot, felső háromszögmátrix transzponálásával a

mátrixot nyertük.

Legyen:

24 =
Ez esetben fennállnak a következő összefüggések:

TT TJ-i-

I 4" M4
másrészt az adott háromszögmátrixok egymásból tükrözéssel

Í3 képezhetők, hiszen H-, a H. felső vizszintes tengelyre va-
ló tükröződése, ill. ITr a H?-nek az alsó vizszintes tengely-
re való tükröződése, KX a ITt-nek a függőleges tengelyre való
tükröződése, illetve 5,- a K-nek a függőleges tengelyre való
tükröződése, s ugyanilyen a függőleges tengelyre vonatkozta-
tott tükröződést találunk H, és H, között. Vé|ül a Hp és H, kö-
zött is a vizszintes tengelyre való tükröződés lehetősége"^ áll
fenn.

g./ Szimmetrikus mátrix

Olyan kvadratikus mátrix, amelynek elemei a fődiago-
nálisra szimmetrikusak. Ilyen például az:

A =

4 3 Í ]
3 2 4
1 4 2]

THa A szimmetrikus mátr ix , akkor: A = A
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Szimmetrikus mátrixokat csak kvadratikus mátrixok között
találunk.

h./ Ferdén szimmetrikus mátrix, vagy antiaziametrikus
mátrix, ha érvényes a

A = -A T -

reláció, azaz ha az A mátrix transzponálásával olyan mátrix-
hoz jutunk, amelynek~elemei az A mátrix azonos helyen lévő
elemeitől csupán előjelüket tekTntve különböznek.

i./ Szalagmátrix

A szalagmátrixok olyan mátrixok, amelyekben a diagonális ele-
mek, valamint a diagonális elemekkel szomszédos első, máso-
dik esetleg harmadik, negyedik, stb. elemek különböznek zérus-
tól, de a főátlótól bizonyos távolságra lévő elemek mindegyi-
ke zérus.

Ismeretes, hogy amennyiben a diagonális elemeken kivüli
eleinek mind zérusok, diagonális mátrixról beszélünk, s ennek
speciális esete az egységmátrix, amikor a diagonális elemek
egységek. Amennyiben a fődiagonális és az ezzel szomszádos e-
lemek különböznek zérustól, de a mátrix többi eleme mind zé-
rus, akkor kontinuás /tridiagonális/ mátrixról vagy Jacobi-
féle mátrixról beszélünk. Pl.:

Amennyiben további szomszédos elemek is különböznek zérus-
tól, akkor azt szoktuk megjelölni, hogy hány "ferde" sorban
találhatók zérustól különböző elemek. Például egy ötsoros 3~za-
lagmátrix vázlatosan jelölve a következő:

Egy adott £ szalagmátrix transzponáltja maga is szalagmát-
rix, amely ugyanannyi "ferde" sorból áll,'mint az eredeti
mátrix. Amennyiben a mátrix nemzérus elemei az £ mátrixban
azonosak az ST = s, azaz a transzponált mátrix az eredeti mát-
rix-szal megegyezik. Ugyancsak egyezőség áll fenn, amennyiben
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a fődiagonálistól azonos távolságra lévő elemek mindkét i-
rányban azonosak.

A szalagmátrix nemzérus elemei lehetnek azonosak, egy-egy
ferde sorban azonosak, stb. Ha egy mátrixban - függetlenül
attól, hogy szalagmátrix-e vagy sem. - minden "ferde" sor csu-
pa megegyező elemből áll, vagyis a mátrix elemei csupán osz-
lop ás sorindexük különbségétől függenek, akkor az adott mát-
rixot Toeplitz típusú mátrixnak nevezzük. Ez esetben:

• " an-2

a _ n + l a - n + 2 a - n + 3 ' ' * a o

Ha egy Toeplitz mátrix szimmetrikus is, elemeire érvényes az

összefüggés.

Természetesen a szalagmátrix nemzérus "ferde" sorai nem
csak a bal felső sarokból a jobb alsó sarok felé tarthatnak,
hanem a bal alsó saroktól a jobb felső sarokba tartó átló sze-
rint is. A bal felső saroktól a jobb alsó sarok felé tartó nem-
zérus "ferde" sorokból álló szalagmátrix és a bal alsó sarok-
ból a jobb felső sarokba tartó nemzérus "ferde" sarokból álló
szalagmátrixok egymás tükröződései, amelynek tengelye miná víz-
szintes, mind függőleges irányú lehet.

A későbbiek során megismerkedünk még a szalagmátrixok, va-
lamint általában a Toeplitz típusú mátrixok több érdekes tu-
lajdonságával.

j./ Minormátrix

Egy mátrix tetszés szerinti sorának és oszlopának el-
hagyásával nyert mátrixot minormátrixnak nevezünk. Ha például

4 7 6 5 3
2 - 7 6 5 1
4 3 2 7 6
8 5 2 9 4
6 1 - 3 2 1
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mátrix első és negyedik sorát, valamint második és ötödik osz-
lopát elhagyjuk, a maradék minor a következő:

-2,3,5
1,3,4

A felső indexek azt mutatják, hogy hányadik sorokat, az alsó
indexek pedig, hogy hányadik oszlopokat tartottuk meg.

k./ Hipermátrix

Olyan mátrix, amelynek elemei maguk is mátrixok,
nagyméretű mátrixokat, vagy ha gazdasági megfontolások vagy
más okok miatt valamely mátrixot vagy mátrixrészt célszerű
külön mátrixokra, mátrixblokkokra bontani vizszintes és füg-
gőleges egyenesekkel, a kapott blokkok az eredeti mátrix e-
lemeit képezhetik. Pl.:

A =

1
1
0

5
1
1

1
1
0

3
5
7

1
0
1

2
4
2

1
0
1

1
3
1

0
0
0

5
2
3

0
0
0

7
3
6

0
0
0

6
4
5

4.21

1 1 1 1
1 1 0 0
0 0 1 1_

5 3 2 1
1 5 4 3
1 7 2 1

^12

-22

[0 0 Ől

0 0 0
p o oj

7 ál
3 4
6 5 JAz egyes blokkokat mlnormátrixoknak, a blokkokra bontást

particionálásnak nevezzük.

Ha egy hipermátrixot ugy part icionáltunk, hogy a diagonális
blokkoktól különböző blokkok zérusmátrixok, kvázidiagonális
mátrixról beszélünk. P l . :
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2
5

0
0

3
4

0
0

0
0

1
2

0
0

5
0

0
0

3
1

1./ Vektor

Már szó volt arról, hogy a mátrixok sorokra, vagy oszlopok-
ra bonthatók, s igy számsorokat vagy számoszlopokat kapunk.
A matematikában egy számsort, vagy egy számoszlopot yektor-
nak nevezünk. /A statisztikában a statisztikai sor elneve-
zést használják./

Az olyan mátrixot tehát, amely egy sorból, vagy egy oszlop-
ból áll, vektornak nevezzük.

Az oszlopvektor m • 1 tipusú, a sorvektor pedig 1 • n tipuaú
mátrix. Eszerint a mátrix aorvektorok, vagy oszlopvektorok
rendszereként is felfogható.

A vektorokat félkövéren szedett /vagy kéziratban aláhúzással
jelölt/ latin kisbetűvel jelöljük. A sorvektoroknál a transz-
ponálást is feltüntetjük, hiszen a sorvektor felfogható a~z
oszlopvektor transzponáltjaként. Eszerint tehát:

Oszlopvektor: a_,

Sorvektor:

a T = a* = [a.

Jelölhetjük a vektorokat általános elemük felirásával is
szögletes zárójelbe téve, pl.:

bf
vagy helytakarékosság céljából a:

a O J • • • ^2» • • • *
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jelölést is alkalmazhatjuk, amikor is az oszlopvektort sor-
vektor formájában irjuk fel, de a transzponálással jelöljük,
hogy az oszlopvektor.

A továbbiakban ismerkedjünk meg néhány speciális vektor-
ral:

Zérusvektor

Olyan vektor, amelynek minden eleme nulla. Jelölése: o

vagy e> , illetve o , például:

s. = ] > »agy £ T = s* = [o, o, ... , o]

A zérusmátrix tehát zérusvektorok rendszereként is felfog-
ható.

Egységvektor

Olyan vektor, amelynek i-edik eleme 1, a többi 0. Jelölé-

se e_., vagy e/, illetve e,, például:

- e3 = e« = [O, 0, 1, o]

Összegző vektor • .

Olyan vektor, amelynek minden eleme 1. Jelölése: 1, illet-

ve 1 , vagy 1 , például:

1 =

A vektorfogalom ismerete alapján könnyű belátni, hogy a
mátrix oszlopvektorok, vagy sorvektorok rendszereként ia fel-
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fogható. Az A mátrix tehát felírható oszlopvektorok rendsze-
reként: ~

£ - I 2i» £.2' például:

vagy sorvektorok rendszereként:

például:

4
2
7

6

r-t

5

3"
5
4_

= C2.
[7,

6,

1,

5,

3]

4 :

Természetes, hogy az egységmátrix egységvektorok rendszere-
ként fogható fel, például:

2 =

m. / Skalár

Olyan mátrix, amely egy sorból és egy oszlopból áll,
tehát 1 • 1 tipusá mátrix /vagy egy elemű vektor/. Ilyenkor
nem ^s használjuk a mátrix vagy vektor Írásmódot.
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2.1.5. Hagyságrenői relációk

Eg.y m • n tipusú A mátrix akkor egyenlő egy m . n
tipusú B mátrix-szal, ha megfelelő helyen levő elemeik azo-
nosak, íéldáúl: ha:

*•[;•;]'• »•[;;]
akkor A = B, mert

vagyis

Ugyanigy értelmezzük a vektorok közötti relációkat is, azaz
ha

•B]. - [ ' ] •B. s 13 I i b = |,|, akkor a = b

Az azonos helyen lévő elemek összehasonlítása alapján értel-
mezzük az alábbi relációkat is:

A
A
A
A
A

=" B
£ B
-=B

lt
d

= 0

a_
a_

a_

a_

a

= P.
< b

^ b

nagyobb
nem kisebb

kisebb
nem nagyobb

nem negativ

A nagyságrendi relációk természetesen csak azonos tipusú
/ugyanannyi sort és ugyanannyi oszlopot tartalmazó/ mát-
rixok, illetve azonos elemszámú vektorok között értelmez-
hetők.

2.2. Müveletek mátrixokkal
2.2.1. Összeadás

Az összeadás művelete csak azonos tipusú /azo-
nos sorból és azonos oszlopból álló/ mátrixok esetén értel-
mezhető. Az

A = [a.d] és B = [b. J
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m • n típusú mátrixok összege ugyancsak m • n tipusú mátrix

A müveletet ugy végezzük el, hogy az azonos helyen lévő e-
lemeket összeadjuk, azaz:

A + B = £

A + B =

Például:

másként | a j i ] + F̂ i-i I = cii> illetve:

= C

3
6

3
4

2

7
8

5

-5"
2

-6
3

2

3
6
8

6

4
2

7

8

5
9
5

5 8 3

3 11 7

9 lo 3

12 12 8_

A gyakorlatban dolgozó agrárszakember gyakran találkozik
azzal, hogy két vagy több mátrixot kell összeadnie, Jólle-
het nem mindig gondol arra, hogy mátrixokkal dolgozik. Ve-
gyük csak azt az egyszerű esetet, amikor egy mezőgazdasági
vállalat három növénytermesztéssel /vagy növénytermesztés-
sel is/ foglalkozó egységgel rendelkezik. Llindhárom egység
kimutatást ad a vállalat központja részére mondjuk a növé-
nyenkénti mütrágyafelhasználásról az alábbiak szerint:

forgó

lí

= p

K

lí

= P
K

0.
búza

P8oo

7oo

|_5oo

ő.
búza

[~7oo
5oo
3oo

Kuko-
rica

looo

8oo

6oo

Kuko-
rica

8oo

6oo
4oo

lí.
forgó

5oo
4oo
2oo

lí.
forgó

looo

8oo

6oo

lí

B = P

K

0.
búza
riooo
1 8oo
|_6oo

Kuko
rica
13oo

looo

8oo

A három kimutatás összesítése a
felhasználását adjs, azaz:

vállalat összes műtrágya-
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vagyis az összeg transzponálja egyenlő a tagok transzpo-
náltjának összegével.

Egyszerűen ellenőrizhetjük, hogy bármely vektorhoz az
e_. egységvektort adva eredményül olyan vektort kapunk, a-
mely az eredeti vektortól csak annyiban tér el, hogy i-e-
dik eleme 1-el növekszik. Ha viszont valamely vektorhoz
összegzővektort adunk, akkor az eredeti vektor minden ele-
mét 1-el növeljük meg. Ha egy adott mátrixhoz egységmát-
rixot adunk, akkor a diagonélis elemeket növeljük 1-el, vi-
szont ha valamely A mátrixhoz olyan mátrixot adunk, amely-
nek minden vektora összegzővektor, akkor eredményül olyan
mátrixot kapunk, melynek elemei 1-el növekednek A elemeihez
képest.

Érdekes eredményhez jutunk, amennyiben rendelkezünk m • n
tipusú E, egységmátrix-szal, egy m • 1 tipusú a_ zérusvektor-
ral, 1 • n-1 tipusú b T zérus sorvektorral és egy m - 1 • n - 1
tipusú -E_ negativ eTőjelü egységmátrix-szal, azaz:

E =

-E =

1
0
0
0

0
1
0
0

0
0
1
0

o"
0
0
1_

9 a =

"o"
0
0
0

, o,

-i o ol
0 - 1 0
_0 0 -lj

Adjuk most az E egységmátrixhoz az a, b , -E-ből megfe-
.ő módon képzet¥ mátrixot a következők szerint:

T =

T =

1
0
0
0

0
1
0
0

0
0
1
0

o"
0
0
1_

+

"o"
0
0

_0_

r-i o oi
0 - 1 0

Lo o -íj
Qo o o]

vagyis:
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T =

1
0
0
0

0
1

0
0

0
0
1
0

0
0
0
1

+

0
0
0
0

-1
0

0
0

0
-1

0
0

0~
0

- 1
0

1 - 1 0 0
0 1 - 1 0
0 0 1-1
0 0 0 1

Egy speciális szalagmétrixot kaptunk tehát, amelynek a
fődiagonálison elhelyezkedő elemei egységek és ezek jobbol-
dali szomszédos elemei rendre -1, a többi elemei zérusok. 3
speciális mátrix-szal még gyakran fogunk találkozni. Liost
csupán annyit jegyezzünk meg, hogy a T mátrixhoz hasonlóan ké-
szíthetünk speciális mátrixokat úgy, hogy a nem zérus elemek
nem egységek, de azonos értékűek, másrészt, hogy a szalagmát-
rimak a diagonális elemektől jobbra két vagy több elemeire
is fennáll, hogy azok nem zérus elemek, hanem egységek, elő-
jelük lehet pozitív vagy negatív,vagy változó, lehet hogy a
diagonális elemektől jobbra zérus elemeket találunk és azok-
tól balra vannak a nem zérus szalagok, stb., vagy mind bal-
ra, mind jobbra vannak nem zérus elemű ferde sorok /szalagok/
esetleg ezek zérus szalagokkal váltakoznak. Igen sok és ér-
dekes szalagmátrix állítható így elő, s az ezekkel végzett
müveletek speciális sajátosságokkal rendelkeznek.

Egyenlőre megkísérelhetjük, hogy összeadunk különböző sza-
lagmátrixokat. Csupán példaként mutatunk be néhányat:

1
0
0
0

- 1
1
0
0

0
- 1

1
0

0
0

- 1

1_

-t-

2

0

0

0

- 2

2

0

0

0

- 2

2

0

0

0

- 2

2 _

+

- 1 1 0 0
0 - 1 1 0
0 0 - 1 1
0 0 0 - 1

Zz 2 0 0"
0 - 2 2 0

0 0 - 2 2

0 0 0 - 2

1
1
0

0

0
1

- 1

0

0
0
1

-1

0
0
0
1

1
0
0
0

— 1

1
0
0

0
- 1

1
0

0
0

- 1

1_

0 0 0 0
0 0 0 0
0 0 0 0

_ 0 0 0 0

~0 0 0 0"
0 0 0 0
0 0 0 0

_ 0 0 0 0_

~2 -1 0 0
-1 2 - 1 0

0 - 1 2 - 1
0 0 - 1 2
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2

0

0

0

- 2

2

0

0

0

- 2

2

0

0

0

- 2

2

1
0
0
0

1
- 1

0
0

0
1

- 1
0

0
0
1

- 1

l-l 0-1 0
0 l-l 0-1
0 0 1 - 1 0
0 0 0 1-1

0 0 1 0 1
- 1 0 0 1 0
1 - 1 0 0 1
-1 1-1 0 0

1-10 0
0 1-10
0 0 1-1
0 0 0 1

1 -1 1-1 1
-1 1-1 1 -1
1-1 1-1 1
-1 1-1 1 -1

Számos más változatot is képezhetünk.

2.2.2. Kivonás

Hasonlóan az összeadáshoz a művelet csak azo-
nos típusú mátrixok esetén értelmezhető. Az A mátrixból B
mátrixot ágy vonjuk ki, hogy az A mátrix eleméből a B máírix
azonos helyen lévő elemeit kivonjuk, azaz: ~

A - B - [b,.] = [ai;j - b^.Példáúl, ha:

J -3 "4 -4

C = A - B = f-3 2

~ ~ |_4 1 íq

akkor:

Természetesen:

A - 0 = A es 0 - A = -A

A fenti szabályok természetesen érvényesek a vektorokra,
mint egy sorból, vagy egy oszlopból álló - tehát 1-n és
m •! tipusú - mátrixokra is, azaz:

a - b = [a,] - [bj = [at - b j ,



Például:

k =
2

-1

5

.60 _

esetén a - b =
3

5
-2

illetve:

[5,4,3], b T = esetén a T - bT= [3,5-2]

Az összeadáshoz hasonlóan végezhetünk müveleteket speciális
mátrixokkal /pl. egységmátrix, szalagmátrix/ is.

Természetesen a kivonás művelete nem kommutativ:

A - B / B - A és a - i j í b - a

és nem asszociativ:

/A - B/ - £ 4 A - /B - C/ és /a_ - b/ - c / a. - /b - c/

Hogy a mátrixok kivonása a mezőgazdasági gyakorlatban is e-
lőfordul, azt az összeadásban bemutatott példa ismeretében
aligha kell bizonyitani.

2.2.3. Mátrix szorzása skalárral

Mátrixot /és természetesen vektort/ ágy szorzunk
skalárral, hogy a mátrix /vektor/ minden elemét megszorozzuk
az adott skalárral:

illetve:

Például:

A mátrixok skalárral való szorzására is érvényes a kommuta-
tivitás:

asszooiativitás: A =
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disztributivitás:

/!(-,+Xo/A = ¥nA + á'.A és J'/A+B/ = f A + <T B

Ugyanezek természetesen érvényesek vektorok esetén ia.

Mátrixok skalárral való szorzása is gyakran előfordul a
mezőgazdasági gyakorlatban pl.: ha egy táblázat fajlagos a-
datait /mütrágyafelhasználás, munkanap- és gépi müszakfel-
használás/ kell átszámitani mondjuk a régebben használatos
katasztrális hold /kh/-ról ha-ra, vagy árváltozás esetén
különböző árakat egy szorzószám alapján számolunk át az tíj
áraknak megfelelően, stb. Természetes, hogy:

OA = AO = 0 ' ...

1A = Al = A

-1A = A/-1/ = -A , a ea utóbbi értelmében:

A - B = A + /-IB/ = A + /-B/

azaz az A - 3 úgy is értelmezhető, hogy az A mátrixhoz hoz-
záadjuk a B matrix mínusz egyszeresét.

Az eddig megismert müveletek az alábbi blokkdiagramaokkal
szemléltethetők. /3. ábra/

A kivonás blokkdiagrammja ugyanez, csupán c, . = a..,- b-^ for-
mulát kell alkalmaznunk. 1*) 1 J X 3

Értelemszerűen alkalmazhatók a fentiek a mátrixnak skalárral
való szorzására is, azonban természetesen itt a c.j =^8-..

műveletet kell használni, ahol X egy skalár, amellyel a mát-
rix minden elemét megszorozzuk.

2.2.4. Vektor szorzása vektorral

A müvelet csak akkor értelmezhető, ha a szóban-
forgó vektorok elemszáma azonos.

Ha vektort szorzunk vektorral, akkor az egyik vektor mindig
eor-,a másik vektor oszlopvektorként Írandó fel. Attól füg-
gően, hogy a baloldali, vagy a jobboldali tényezőt Írjuk fel
sörvektorként, beszélünk skaláris szorzásról és diadikus
szorzásról.

a./ Skaláris szorzás

Skaláris szorzásról beszélünk akkor, ha sorvektort szorzunk
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LI
3 =

13 = a i 3 + b i 3 I

igen

igen

Mátrixok összeadásának
•blokkdiagrammja

3. ábra • / s t o P '

jobbról oszlopvektorral. Eredményül skalárt kapunk. A műve-
letet a következőképpen végezzük el:

a T b = [ a l b l + a 2 b 2 + - + a n b n] =



vagyis az azonos sorszámú /azonos helyen lévő/ elemeket ösz-
szeszorozzuk és a szorzatokat összeadjuk. Pl.:

£4 • 5 + /-2A 2 + 3 • 7] = £20-4+213 = 37

A számítás menetét az alábbi blokkdiagrammal szemléltetjük:
/lásd következő oldalon 4. ábrán/.

Vektorok skaláris szorzatával a mezőgazdasági gyakorlatban
is sokszor találkozunk. Ha például az A, B, C termékekből
5oo, 800 és 15oo tonnát értékesitünk és ezek tonnánkénti egy-
ségára 3ooo, 4000, 5ooo Ft, akkor az árbevételt a következő-
képpen kapjuk:

[5oo,8oo,15oq]
3ooo
4ooo I = [JL5ooooo+32ooooo+75oooooJ =
5ooo

= 12200000 Pt

A skaláris szorzás során a két vektor felcserélhető, ha azo-
kat transzponáljuk, vagyis a skaláris szorzás kommutatív jel-
legű kifejezés, azaz:

rn m

2. £ = £ §.

Érvényes a disztributivitás is, vagyis:

= a b+a c

Természetes, hogy:

/a_T+bT/p_ = a.Tc_+bTc_

T T
a 0 = j a

a_ e_. =

= l a =

0

= a.
n

/<rariVb = a^ / i -b / = JT/aTb/

I"1"! n /n-elemü vektorok esetén/.
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i =i+l

a = d

igen

i
d

— .

+ a

i «

= 1
= 0

i b i

r n >

Skaláris szorzás

blokkd iagranmj a

4. ábra

Stop

b./ Vektorok diadikus szorzata

Vektorok diadikus szorzatáról beszélünk akkor, ha
oszlopvektort szorzunk jobbról sorvektorral. Eredményül
mátrixot kapunk, amelynek annyi sora van, mint ahány eleme
van az oszlopvektornak, és annyi oszlopa van, mint ahány
eleme van a sorvektornak.

A müvelet elvégzése a következőképpen történik: /5. ábra/

[bl'b2""bn]!
pl
y b

"ai

y
•
_an

b 2 , . . , y



Példáúl:

- 6 5 -

£4,7,6] =
y
2
5

4,
Pl
2 7,

?l

3
2

_5

6 =
12 21 18
8 14 12
2o 35 3o

Könnyen ellenőrizhetjük, hogy:

T T

2. íl r b_ a_ , viszont igaz, hogy:

/a_ b_ / = b a_ , es:

a 0 1 = 0 a = 0

6 a =
 B .

l a =

_ i > E i » ••• » —"

71

k
A vektorok diadikus szorzata is előfordul a mezőgazdaság-
ban. Ha pl. valamely növény mütrágyaszükséglete ha-onként
ii, P és K műtrágyákból 3oo, 2oo,8o kg, s az adott növényt
loo, 8o és 7o ha-os táblákon termeljük, akkor táblánként a
különféle műtrágyákból felhasználandó mennyiségek:

Tábla

N
P
K

3oo"
2oo

8o

I II III

[loo,8o,7o]

I I I I I

3o ooo 24 ooo 21 ooo

2o ooo 16 ooo 14 ooo

8 ooo 6 4oo 5 6oo
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A diadikus szorzás

blokkd iagramm3 a

. 5. ábra

2.2.5. Mátrix szorzása vektorral

llátrixot jobbról oszlopvektorral, balról sorvek-
torral szorozhatunk.
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a. / Matrix szorzása jobbról oszlopvektorral

A müvelet csak akkor értelmezhető, ha a mátrix osz-
lop vektora inak száma és a vektor komponenseinek száma mege-
gyezik.

A müveletet ugy végezzük, hogy a mátrix első oszlopvek-
torát a vektor első elemével, a második oszlopvektorát az
oszlopvektor második elemével, stb. megszorozzuk és az igy
kapott szorzatokat összeadjuk. Eredményül oszlopvektort ka-
punk, amelynek annyi eleme van, ahány sora volt a mátrixnak.
Tehát:

n
A x = a-jX-|+a x p + * ' * +—n xn = *̂ — ixi = —' például:

Mátrixnak vektorral való szorzata a mezőgazdaságban gyak-
ran fordul elő. Például táblázatba foglalhatjuk valamely ta-
karmányadagban szereplő takarmányok fajlagos bélfcartalmi ada-
tait. Az igy kapott mátrixot megszorozva a takarmányadagban
szereplő takarmányok mennyiségét kifejező vektorral megkap-
juk, hogy a különböző táplálóanyagokból az adag mennyit tar-
talmaz. Hasonlóképpen a termelési tevékenységek fajlagos mun-
kanapszükségleteit, vagy valamely géptípusból adódó fajlagos
müszakszüksegletét időszakonként mátrixba foglalva és megszo-
rozva a tevékenységek terjedelmét /volumenét/ kifejező vek-
torral megkapjuk egy adott vállalati terv megvalósitásának
munkaerő, illetve gépimunka szükségletét időszakonként /pl.
havonként, dekádonként/.

b./ Mátrix szorzása balról sorvektorral

A müvelet csak akkor értelmezhető, ha a mátrix sora-
inak száma és a vektor komponenseinek száma megegyezik. E-
redményül sorvektort kapunk. A müveletet úgy végezzük, hogy
a mátrix első sorát a sorvektor első elemével, második so-
rát a második elemével megszorozzuk, s az igy nyert sorvek-
torokat összeadjuk, vagyis:



£T£ = £4,5,7]
2 3

4 5 = 4 [2,3] + 5 Q,5] + 7 £-7,f|
-7 1

= 03,12] + [2o,25l + [-49,7] = Q-21,44]

Vegyük észre, hogy most is az előbbi egyszerű példával dol-
goztunk, és eredményül az előbbi vektor transzponáltját kap-
tuk. A müvelet természetesen csak akkor volt értelmezhető,
ha a szorzótényezőket is transzponáltuk. Könnyű - a fentiek
és egyszerű példák, vagy általános formulák utján is - be-
látni, hogy:

vagyis:A x = b _ és i i = b ,

/A x/ = x A

Egyszerűen meggyőzüdhetünk arról is, hogy:

A e t = a 3 i = 3

e? = a i i = i

A 1 =
3=1

1TA = 2

A müvelet elvégzésének blokkdiagrammja a következő:
/lásd következő oldalon 6. ábrát/.

Természetesen ha mátrixot balról sorvektorrál szorozzuk,
akkor £ = a.x. helyett értelemszerűen cT = x^aT adódik.

2.2.6. Mátrix szorzása mátrix-szal •

A müvelet csak akkor értelmezhető, ha az első
tényező oszlopainak száma és a második tényező sorainak szá-
ma megegyezik. Eredményül olyan mátrixot kapunk, amelyben
a sorok száma megegyezik az első tényező sorainak számával,
az oszlopok száma pedig a második tényező oszlopainak szá-
mával.
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i =

3 =

1

1

Matrix szorzása vektorral

6. ábra
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A müvelet háromféle módon végezhető el:

a./ A műveletet úgy végezzük, hogy azt felbontjuk mát-
rixnak .jobbról oszlopvektorral váló szorzatéra:

A B =|A b^, A b_2 A t>J= £ , például:

3 4

2 7

5 1

3 4

2 7

5 1

3 4

2 7

5 1

I221
3 2 ,

J14J

46

61

37
>

"44"

51

45 [22 46 44]
32 61 51

14 37 45j

t>./ A müveletet felbontjuk mátrixnak balról sorvektor-
ral történő szorzatára:

A B a

2-Í 2

S.2 B

S Í S

= £, például:
3 4
2 7
5 1

[2 6 8"f _
[.4 7 5 J "

= [3(2,6,8l+ 4[4,7,5J|,|2l2,6,8]- .5J, [s[2,6,8l+ 1&.7.5J

35j , [lo,3o,4o] +[4,7,5]

[22,46,443, [32,61,5l],pL4,37,45]
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c./ A müveletet felbontjuk vektorok skaláris szorzatá-

A B = , például:
3 4
2 7
5 1

p 6

[?. . &.

. [5,

4]

7]

1]

6"

7.
6"

_7_

6"

7.

. D.

6+16 18+28 24+20

4+28 12+49 16+35

4 3o+ 7 4o+ 5

22 46 44

32 61 51

14 37 45

Az A B szorzat általában nem kommutatív, azaz általában:

A B / B A

Az is lehetséges, hogy az A B mátrix szorzat értelmezhe-
tő, de a B A szorzat nem is értelmezhető- Pl:

A =

2 3

4 5
1 0

f|
értelmezhető, mivel A_ oszlopainak száma és B sorainak szá-

ma megegyezik. ~
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Ugyanekkor a:

B A = [3 f
2 3

4 5

1 0

nem értelmezhető, mert s fenti

egyezőség nem áll fenn.

Vegyünk most két kvadratikus mátrixot:

= \l s]'
Most mind az A B, mind a B A szorzat értelmezhető /és ez
négyzetes mátrixok esetén mindig fenn áll/. Végezzük el a
müveleteket:

2 4] pL8 28

l 24
]
J

Az eredmény tehát eltérő, azaz: A B 4 3 A

Vannak speciális esetek, amikor a tényezők felcserélése
után is ugyanazt az eredményt kapjuk, például:

[A 5 |li Öl p4 5~| fi Ölp 5] f~4 5]

Egyszerűen belátható az is, hogy A 0 = 0 A = 0

Ha az A és B diagonális mátrixok, akkor szorzatuk a kö-
vetkező :

A B =

o.. .o o o... b

á n b
0

0

a
o . .

22b22*

•
0 . . .

. . o

. . o

amn mn_
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méskánt: '

« a b22« * • * » ann bnn>22b22

A fentiekből következik, hogy két, vagy több diagonális mát-
rix szorzata olyan diagonális mátrix, amelynek diagonális e-
lemei a tényező mátrixok megegyező helyen lévő diagonális e-
lemeinek szorzata. Ilyenkor a tényezőmátrixok felcserélése
nem változtatja meg az eredményt.

A diagonális mátrixok szorzatából következik,hogy egy diago-
nélis mátrix k-adik hatványa /k nemnegativ egész szám/ olyan
diagonális mátrix, amelynek diagonális elemei az eredeti mát-
rix elemeinek k-adik hatványai. Ezek szerint ha:

A = < a 1 i . a
2 2 » ••• > Sjinx*

.k _s k k k s.
- -\ aii> a22' " • ' nn/

A =<3,4,2> és A3 =<27,64,8>

Érdekes megvizsgálni speciális mátrixok szorzatát. Ha példá-
ul egy mátrixot jobbról szorzunk diagonális mátrix-szal, ak-
kor elég a szorzandó mátrix oszlopait a megfelelő diagonális
elemekkel megszorzoni. Balról való szorzásnál értelemszerűen
a mátrix sorait szorozzuk a megfelelő diagonális elemekkel.

Egy mátrixot jobbról, illetve balról szorozva permutáló mát-
rix-szal, csak a mátrix sorainak, illetve oszlopainak sor-
rendje változik.

Ha alsó, vagy felső háromszögmátrixokat szorzunk össze, ered-
ményül azonos tipusú /alsó, vagy felső/ háromszögmátrixot
kapunk.

Érdekes eredményt kapunk, ha egy A mátrixot olyan háromszög-
mátrix-szal szorzunk meg, amelynek" nemzérus elemei egységek.
Jelöljük ezeket a mátrixokat a következőképpen:
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Az A mátrixot ezekkel szorozva a következő eredményeket
kapjuk:

A H-, = I a, +S.p+a.T+ *•• +2.n»—2
+—3+ *"* +Sn' •••S. I

A Ho = S.1 >S,i+a.2'—l+—2+—•?'•**'—l+—2+'' * +—n I

A H, = a„,a_ 1+ayi,...,a1+a,+...+a_— —3 I—n'—n-1 —n' '—1 —d J

á £4. = a . i+S.2+" '+-n>- l+-2+*#*+-n-l1*" ' - 1

a 1 + a 2 +. . . +SiR, a 2 + a 3 +. . . +a^,...,a^J
| m m fp m ni m |H-jA = a r . a ; - , + a r , . . . , a T + a i + . . . + a ~—i— I—m7—m~l —m' '—1 —<i J
F" T T T T T T T~l

S 4 A = S - l " 1 " — 2 + - * * + S m > — 1 + — 2 + * " " + — n - 1 ' * * " ' — 1 I

Hem kevésbé érdekes eredményeket állíthatunk elő, ha vala-
mely mátrixot szalagmátrixszal szorzunk. Vegyük ebből a szem-
pontból azokat a szalagmátrixokat, amelyek diagonális elemei
egységek és valamelyik szomszádos ferde sor elemei -1, a töb-
bi elemei O-ból állnak. Valójában négyféle ilyen szalagmát-
rix különböztethető meg a következők szerint:

h =

1 3 =

i
0
0
0

0
0

-1
1

- 1
1
0
0

0
-1

1
0

0
- 1

1
0

- 1
1
0
0

0
0

-1
1

! -

0
0
0

-2 =

1
- 1

0
0

" 0
0
0

_ 1

0
1

- 1
0

0
0
1

- 1

0
0
1

-1

0
1

- 1
0

0
0
0
1

1
- 1

0
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Először is könnyen ellenőrizhető, hogy a fenti mátrixok kö-
zött fennállnak a következő összefüggések:

'^_ = —2 ' —2 = —1 ' a z a z 'JLi és Tg egymás transzponált-

jai. Ugyanakkor T_ a 5?,-nek a függőleges T. pedig Tg-nek a

vizszintes tengelyre való tükröződése.

Ha egy A mátrixot a fenti T_ mátrixokkal szorzunk a követ-
kező eredményeket kapjuk:

1 = [%' &2""S.l»S.3-S.2' *' *

- -2 =

n-l' -n-2"S-n-l' * * *'' -2"2.1 • -ÍJ

- ^4 = |_ an > an-l*" an >" # > al" a2j

s.í-4«a2-a3 sí-i-sí.

^ 2 ^ = I^S-i»S.2"-l' -3 " ^ 2 ' *''' -n-l-n J

-n~Síx-l' -n-2*"-a-l'' *'' -lj

T T

Végezzünk müveleteket más azalagmátrizokkal is. A mezőgaz-
dasági alkalmazások során /még a további matematikai ismere-
tek során is/ látni fogjuk, hogy a H és CO mátrixok ismerete
megkönnyiti bizonyos speciális matematikai modellek kezelé-
sét.

A mátrixok szorzásánál is érvényes az assaociativitás:

/A B/ £ = A /B £/ ,
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valamint a disztributivitáa:

A /B + C/ = A B + A C és / A + B / C = A £ + B £

Két mátrix szorzatát a következő blokkdiagranunal szemléltet-
jük: 7. ábra.

Start

Mátrix szorzata

7. ábra

i = 1

i

ciá =

= 1

b



» . 77-

2.2.7- A mátrixszorzat transzponáltja

Egy szorzat transzponáltját megkapjuk, ha a té-
nyezőket felcseréljük és mindkét tényezőt transzponáljuk.
Általában érvényes, hogy:

/A B/* = B* A K

vagyis a szorzat transzponéltja egyenlő a felcserélt ténye-
zők transzponáltjának szorzatával. Hasonlóképpen:

/A B C/* = C K

A B =

i. 5]

Természetesen:

/A B/* = U

L 8 10j

B* A* =

C4. C J ,
Tehát valóban:

/A B/K = BK A*

, például:

A = [e *]• S = [3 2]

[2, 4] '1
lOj

|_8 loj
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2.2.8. Mátrixok hatványozása

Hatványozni csak négyzetes mátrixokat leliet a
következők szerint:

A 1 - A

A = A A

= A 2 A =

A = A A =

A A A

A A A A , természetesen:

2.2.9. Műveletek blokkokra bontott mátrixokkal

A mátrix műveletekkel kapcsolatban megismert sza-
bályok érvényesek akkor is, ha a müveleteket blokkokra bon-
tott mátrixokkal végezzük. Ha tehát a hipermátrlxokat alkal-
mas módon particionálással blokkokra bontjuk, ugy hogy a blok-
kok között a müveletek elvégezhetők legyenek, akkor:

A B =

An + hi

- 2 1 + - 2 1

A12 +

A 2 2 +

- 1 2 - 1 2

B 1 2 "

" 2 2 _

A n Si<

A21 2x

3 + A12 5

A =

4
3
2

0
1

3
2
1

0
- 1

0
- 1

2

-3
-4

-3
-2

1

0
1

2
3
4

5
6

B =

2 3 1
0 2 2
1 1 3

0 0 2

3 - 1 1

Ha pi. :

0 -1
1 0
2 1

3 2
2 3
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3 4 l - l 3
3 2 1 1 5
0 0 - 1 3 7
4 - 2 - 3 3 9

vagy a műveleteket blokkokra elvégezve:

Ali + £

£2i + £2i

A 22 B 22
"l f3 2"|
j + [2 3j = é 8 :

-22 + £22

Szorozzuk össze a két mátrixot:

6
3
3

0

_4

6
4
2

0

- 2

1

1

1

- 1

-3

-3
- 1

1

3
3

l "

3
5

7
9

4
3
2

0

1

3
2

1

0

- 1

0
- 1

- 2

-3
-4

-3
- 2

- 1

0

1

2

3
4

1

6

2
0

1

0

3

3
2

1

0
1

1
2

3

2

1

0
1

2

3
2

- 1
0

1

2

3
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14
14
14
0
16

16
9
2

-4
-9

6
3
0

-8

-5

-2
0
2

4
6

-4
' 1

6
12

15

Végezzük el a szorzást blokkokra bontott mátrixszal:

4l.2 £21 =

An B12 =

-12 -22

-22 ̂ 2

A21 S12

~8

5
_2

6
9
12

18
12

6

-2

-3
-4

10~

4
-2.

-4
-1
2.

'3-41
0 -4

_-3 -4-J

-5 0
0 5

.5 lol

-3

-3

1]



-22 ^2

- 81 -

10 151
20_[

Végezzük el az összeadásokat és állítsuk össze az eredmény-
mátrixot, vagyis:

A1X B 1 2 + A 1 2 B22~1

-21 %2 + ^22 S22J

Példánkban tehát:

A B =

8 18 10
5 12 4
2 6 -2

-3 -3 -3
-2 -3 -13

14 16 6 -2 -4
14 9 3 0 1
14 2 0 2 6
0 - 4 - 8 4 12
16 -9 -5 6 15

"6
9

12

"3
18

-2
-3
-4

-1
-6

-4"
- 1

2_

l"
8

~ 3
0

_~3

'-6

_~9

-4"
-4
-4.

-3"
-5.

+
—5

0
_ 5

lo
15

0~

5
10_

15"
20_

Természetesen a blokkok közötti müveletek csak kompatibilis
blokkokkal végezhetők.

2.2.10. Vektorok és mátrixok lineáris kombinációja

A k. skalárokról és sz a_̂ , a_2,

. , a "n" komponensü vektorokból alkotott k-,a_-, + k 2a 2 + ...

+ k a kifejezést a vektorok lineáris kombinációjának nevez-
zük? p

Kikötésünk csupán annyi, hogy "p" természetes szám legyen. 3

szerint a ka_ is lineáris kombináció. Ez a legegyszerűbb li-
neáris kombináció, amikor egy vektort azorzunk meg skalárral.
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Ilyen formán viszont egy vektor is felfogható lineáris kom-
binációként, hiszen ha k = 1, akkor:

1 2. =
 SL

A skalárszorzók előjele szerint beszélünk pozitív, nega-
tív, nempozitiv és nemnegativ lineáris kombinációkról. Azo-
kat a nemnegativ lineáris kombinációkat, amelyekben a skalár-
szorzók összege 1, azaz:

P
£ k, = 1, konvex lineáris kombinációnak nevezzük, pl:
i=l 1

kx = 0,3 k2 = 0,4 k = 0,3 és

k1 + k2 + k3 = 0,3 + 0,4 + 0,3 = 1 .

Lineáris kombinációval találkozunk akkor is, amikor mát-
rixot vektorral szorzunk.

Az A z vagy y* A szorzat ugyanis nem más, mint a

mátrix vektorainak és a vektor komponenseinek lineáris kom-
binációja, hiszen mint ismeretes:

A x = a^xl + —23:2 + *** + —nxn

y_* A = ? 1 a " + y2a* + ... + ^

Ilyen jellegű feladatok megoldására gyakran kerül sor a
mezőgazdaságban. Például amikor takarmányadagot állítunk
össze, a beltartalmi táblázatot /mátrixot/ szorozzuk a ta-
karmányadaggal /vektorral/ és megkapjuk az adag beltartalmi
értékeit. Kasonlóképpen, amikor munkaerő mérlegeket, vagy
gépi munkamérlegeket készítünk, a különböző termékek fajla-
gos munkaerő, vagy gépi munkaigényét tartalmazó táblázatot
/mátrixot/ szorozzuk a termelési szerkezet vektorával, s meg-
kapjuk, hogy az adott termelési szerkezet megvalósítása ha-
vonként mennyi munkanap, illetve gépi müszakszükséglettel
jár.

A vektorok lineáris kombinációjához hasonlóan értelmezzük
a mátrixok lineáris kombinációját.

Ha az m » n tipusú A-,, A„, ... , A mátrixok és
—x — d. —p

a ' ' k-̂ , kg, ... , k skalárokból

alkotott ^1—1 + k?—2 + • • • + -̂p—n



kifejezést tekintjük, mátrixok lineáris kombinációját álli-
tottuk elő. Ha A kvadratikus mátrix, akkor az

f ILI = k

0A° + kiA
1 + k

2-
2 + ••• + V-"1

lineáris kombinációt az A mátrix m-ed fokú polinomjának ne-
vezzük, ahol kQ, k-̂ , kg, ...,k skalárok és

Pélőáúl: f /A/ = 8 A°- 6 A + A 2 '

az A mátrix másodfokú polinomja.

A lineáris kombinációt természetesen csak azonos elemszámú
vektorok, illetve azonos típusú mátrixokkal alkothatunk.

Tekintve, hogy skalérok bármely valós értéket felvehetnek,
az összes lineáris kombinációk halmaza végtelen halmaz.

2.2.11. további speciális mátrixok

Hilpotens mátrix

Ha van olyan m > o egész számú kitevő, hogy: A = 0, az
adott mátrixot nilpotens mátrixnak nevezzük. ~*

Vizsgáljuk meg, hányadik hatvány ad zérusmátrixot, ha:

A =

0 0 0 0

. 4 0 0 0

6 3 0 0

5 2 5 0

= A A =

0
4

6

5

0
0

3

2

0
0

0

5

0
0

0

0

0

4

6

5

0

0

3

2

0

0

0

5

o"
0

0

0

0 0 0 0

0 0 0 0

12 0 0 0

38 15 0 0
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0

0

12

38

0

0

0

15

0

0

0

0

o"
0

0

0_

0 .

4

6

5

0

0

3

2

0

0

0

5

0~

0

0

0_

0 0 0 0

0 0 0 0

0 0 0 0

60 0 0 0

A4= A3 A =

0

0

0

60

0

0

0

0

0

0

0

0

o"
0

0

0_

0

4

6

5

0

0

3

2

0

0

0

5

0~

0

0

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Tehát az adott példában: = 0

Aszimptotikusan nilpotens mátrix

Ha valamely A = 0 mátrixra fennáli az Ist A < 1 K

reláció, vagyis ha a mátrix elemeinek összege minden oszlopban
I-nél kisebb, az adott márixot aszimptotikusan nilpotens mát-
rixnak nevezzük.

Ez azt is jelenti, hogy pozitiv egész számú m kitevü nö-

velésével az Am hatvány a zérusmátrixhoz közeledik.

Legyen adva az:

[0,4 0,3 0,4

0,1 0,3 0,2
0,2 0,2 0,2_

mátrix. Képezzük az I s A szorzatot, azaz

1* A = [i. i, i]
0,4 0,3 0,4

0,1 0,3 0,2

0,2 0,2 0,2

[oo,7 , 0, ,8j



Tehát fennáll, hogy:

1 K A = fo,7 0,8 0,8 j < íl, 1, lí

Host képezzük az A mátrix hatványait:

,2
0,4 0,3 0,4
0,1 0,3 0,2
0,2 0,2 0,2

"o,27 0,29 0,30
0,11 0,16 0,11
0,14 0,16 0,16

o,
o,
o,

4
1
2

o,
o,
o,

3
3
2

0,
0,
o,

4
2
2

=

' o ,4 0 , 3 0,4*
0 , 1 0 , 3 0 , 2
0 , 2 0 , 2 0 , 2

0,27 0,29 0,30
0,11 0,16 0,11
0,14 0,16 0,16

*O,197 0,228 0,226
0,082 0,103 0,098
0,104 0,122 0,120

2 3 S
látjuk, hogy A > A > A ...,. Ellenőrizhetjük, hogy s hatvany-
kitevó továbbT növelése esetén mátrixunk a zérusmátrixhoz kö-
zeledik.

IJinkov/ski - Leontief-féle mátrix

Ha A aszimptotikusan nilpotens mátrix, akkor az E - A
mátrix Llinkowski - Leontief-féle mátrix. Az ilyen má¥rix dia-
gonális elemei pozitivek, a többi elem pedig nem pozitív. Pl.:

E - A =

1

0

0

0

1

0

0

0

1

-

0,1 0,3 0,2

0,4 0,1 0,3

0,2 0,4 0,4

0,9 -0,3 -0,2

-0,4 0,9 -0,3

-0,2 -0,4 0,6

Sztochasztikus mátrix

Ha A nemnegativ, tehát:

A = 0_ , és eleget tesz az:

A 1 = 1

követelménynek, akkor azt sztochasztikus mátrixnak nevez-
zük.



Például:

- 8 6 -

A =

0,3 0,6 0,1

0 0,4 0,6

0,5 0,5 0

sztochasztikus mátrix, hiszen

A 1 =
o,
0

o,

3

5

o,
o,
o,

6
4
5

0 ,
o,
0

1
6

1
1
1

=
1
1
1

Ha sonlóképpen:

A 1 =
0,2 0,3 0,5

0,6 0,3 0,1

0,2 0,6 0,2

"l"
1
1

'II

l-l

1
1

2.2.12. Geometriai értelmezés és ábrázolhatóság

Az 1 elemű vektorok, vagyis a skalárok számegyenesen áb-
rázolhstók. Vegyünk fel a számegyenesen egy tetszőleges 0
kezdőpontot. Válasszunk egy egységnyi szekcszt a 0 ponttól
kiindulva Jobbra /ez megállapodás/ mérjük fel a számegyenes-
re. A szakasz végpontjához egy egyelemü egységvektort ren-
delünk, vagyis 1—et, tehát:

Ezt a szakaszt ismételten felmérve a számegyenesen, a ka-
pott végpontokhoz irjuk a természetes számokat /skElárokst,
egyelemü vektorokat/.

•4 H
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A természetes számokat igy kétféle módon szemléltethet-
jük. Egyrészt a számegyenes meghatározott pontjaival, más-
részt szókkal az egyenes szakaszokkal, amelyek kezdőpontja
0, végpontja pedig az a pont, amelyhez a megfelelő szám van
irva.

Á számegyenesen szemléltethetjük a természetes számokkal
végzett müveleteket is. Például 2 + 4-et a számegyenesen ugy
szemléltetjük, hogy a 0 pontból kiindulva felmérjük a 2-nek
megfelelő szakaszt, majd ennek végpontjából a 4-et reprezen-
táló szakaszt.

A második szakasz végpontja adj'a az eredményt.

Könnyű belátni, hogy az összeadással ellentétes müvele-
tet a kivonást ugy végezzük, hogy a kisebbitendőt a 0 kezdő-
ponttól kiindulva felmérjük a számegyenesre, s ennek végpont-
jából kiindulva, ellenkező irányban felmérjük a számegyenes-
re a kivonandót reprezentáló szakaszt, melynek végpontjában
kepjuk az eredményt. Például 5 - 3 a következő:

Ha a kivonandó nagyobb a kisebbitendőnél, az eredmény a 0
ponttól balra esik. Pl.: 2 - 5 :
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Az eredményt csak akkor tudjuk leolvasni, ha a száme-
gyenest a 0 ponttól balra meghosszabbítjuk, s erre az ol-
dalra is ismételten felmérjük sz egységnyi szakaszt. Az
igy kapott pontokhoz a -1, -2, -3 ..• számokat rendel-
jük. Most már ábrázolni tudjuk a 2 - 5 müveletet:

-I 1-
_4 _3 - 2 - 1 0 1

Az igy elkészitett számegyenesen az összes természetes
számok ábrázolhatok és a számegyenes pontjai és a természe-
tes számok között kölcsönös és egyértelmű megfeleltetés ls-
tesithetö, vagyis minden természetes számnak megfelel a szám-
egyenes egy és csakis egy pontja, illetve a számegyenes min-
den pontjának megfelel egy és csakis egy természetes szára.

Azt sem nehéz megérteni, hogy ha «> egyelemü egységvek-
tor, azaz:

ennek nyújtásával, zsugorításával bejárhatjuk az egész száme-
gyenest. Ha ugyanis e = flT és ezt k szorzásra nyújtjuk,
akkor a k megfelelő megválasztásával a számegyenes bár-
mely pontját megkaphatjuk /bármely természetes számot/.

Ha például k = 3, akkor ke^ = 3-1 = 3.

Ha k = -0,75, akkor ke^ = -0,75 • 1 = -0,75

éa igy tovább.

Felvehetünk a számegyenesen bármely más egyelemü vektort is
és ezzel is bejárhatjuk a számegyenest.

Ha például a_ = fjQ és k = 2, akkor ka_ = 2-5 = 10.

Ha k = -0,5, akkor ka_ = -0,5* 5 = -2,5, stb.

Ha b = -3 és k = 2, akkor kb = 2 /-3/ = -6,

vagy k = -3 esetén kb_ = -3 /-3/ = 9, stb.
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Hasonlóképpen egyértelmű és kölcsönös megfeleltetés lé-
tesithetö s kételemű vektorok éa s sík pontjai között. Ezt
derékszögű /vagy ferdeszögü/ koordináta-rendszerben tudjuk
ábrázolni. Ábrázoljunk néhány kételemű vektort:

a T = C 3 , 5j
>T -c-s. d
= T -C-3.-ÍJ

•í-C1- öl

Kételemű rektorok ábrázolása

8. ábra

em m

Kern nehéz belátni, hog.y az £, = 1,0 és ê , = 0,
kételemű egységvektorok nyújtásával, zsugorításával és össze-
adásukkal, bejárhatjuk a koordináta sikot. De bejárhatnánk a
sikot bármely más nem egy egyenesbe eső kételemű vektorral is,
hs azokat k-,-, illetve k^-szeresükre nyújtjuk, illetve zsugo-

ritjuk, összeadjuk, vagy kivonjuk. Ha például

k 2 ='3, akkor:

k-, = 2 és

k2Í2 = 2 f1' °j + 3 fő, í j =

, 3] és 4 - [4, 2 ]
, 3] + 3 P4, 2~\ == 2

, 3 I , vagy ha

, akkor
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A háromelemű vektorokat három tengelyű térbeli itqorá iná-
ta-rendszerben tudjuk ábrázolni, s kölcsönös és egyértelmű
megfeleltetés létezik a tér pontjai és a háromelemű vekto-
rok között. A háromelemű egységvektorok, vagy bármely nem-
egysikba eső háromelemű vektorok nyújtásával, illetve zsugo-
rításával és összeadásával bejárhatjuk a háromdimenziós te-
ret.

A négy és ennél több komponengü vektorokat nem tudjuk áb-
rázolni. A geometriai ábrázolhatóság azonban nem feltetele
a vektorok létezésének és annak, hogy azokkal müveleteket
tudjunk végezni. Az n komponensü vektorokat ugy foghatjuk
fel - az előbbi egyszerű és ábrázolható esetekből általáno-
sítva. - mint n dimenziós térben ábrázolható vektorokat.

Háromnál nem több komponensü vektorokkal végzett müveletek
is szemléltethetők. Az egyszerűség kedvéért válasszuk a kéte-
lemű vektorokat.

f 1TÁbrázoljuk aa a + b müveletet, ha a_ = 2, 3

= £4, l] , akkor a + b = £&, 4~\ / 3 . ábra/7
b =

Vektorok összeadása

9. ábra
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Az a_ és b_ vektor összegét a következő módon definiáljuk:
Vegyük fel a b_-t ugy, hogy kezdőpontja az a. végpontjával a-
zonos legyen. Az a_ kezdőpontjából a b végpontjába vezető
vektort az a. és b vektorok összegéneE mondjuk és a + b-vel
jelöljük. ~

Az összeget eredőnek, az összeg tagijaiig összetevőnek és
a vektorok definíció szerinti elhelyezését a vektorok egymás-
hoz fűzésének mondjuk.

A vektorokat hosszuk és irányuk szabja meg, s párhuzamo-
san eltolhatok. A vektorok szabad eltolhatóságából követke-
zik, hogy az összegre adott definíciónk a két vektor össze-
gét egyértelműen határozza meg /10. ábra/. Ha tehát:

/

í.

a / b , ' • akkor • 4 a_ + b . Ha :

a

íL > akkor a + b és

10. ábra: Vektorok összeadása
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Az ábrából az is látható /és a vektorok szabad eltolható-
ságából következik/, hogy az összeadandó vektorokkal, mint
oldalakkal /esetleg elfajuló/ paralellogrsmniét szerkeszthe-
tünk. Sbből az is kitűnik, hogy az összegvektor nen függ az
összeadandók sorrendjének megválasztásától, tehát:

a_ + b_ = b_ + a_

vagyis mindegy, hogy a b-t illesztjük az n_ végpontjához,
vagy az a_-t a b végpontjához, ugyanazt az eredményt kapjuk.

Az összeadás alapján nem nehéz ábrázolni a vektorok kü-
lönbségét sem. Legyen:

a = J~6, 4~jT és b = |~4, lj.
Ábrázoljuk az adott vektorokat és az a_ - b_ különbséget
A l . ábra/.

Vektorok különbsége

11. ábra
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A kivonást most ugy végeztük, hogy az a, végpontjához il-
lesztettük a b_ vektort ellenkező irányban.

Végül ábrázoljuk a vektorok skalárral való szorzását. Le-
gyen :

a =[2, l] ; k = 2

és ábrázoljuk a k a_ szorzatot /12. ábra/.

0 1 2 3

12. ábra: Vektor szorzása skalárral

Ábrázoljuk még az a_x = [_2, f\ , a.2 = [j3,

lamint a k.̂  = 2, k„ = 3 skalárok ^2.-1

kombinációját A 3 . ábra/:

13. ábra: lineáris kombináció

vektorok, va-

2-2 l i n Bári&

+ k 2 a 2

1 2 3 4 5 6 7 8 9 ] f lB12 13
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3. FEJEZET ;

LIHEÁRIS TÉR

3.1. Az n-elemű vektorok lineáris tere

Mivel egy vektor komponensei végtelen sok valós számérté-
ket felvehetnek, végtelen sok n-kontponensü vektor van. Esze-
rint tehát az n-komponensü vektorok összessége végtelen hal-
maz.

Az előbbiekben láttuk azt is,hogy a számegyenest az egy
elemű vektorok terének nevezhetjük. Magát a tér kifejezést
képletes értelemben használjuk, hiszen az egy komponensü vek-
torok tere valójában egy egyenes /egydimenziós tér/, mi azon-
ban mindig a tér kifejezést fogjuk használni, amikor azonos
elemszámú vektorok összességéről van szó. Ennek megfelelően
a két elemű vektorok tere a sik, a három elemű vektorok tere
a háromdimenziós tér, a négy elemű vektorok tere a négydimen-
ziós tér és igy tovább, az n-elemü vektorok tere az n-dimen-
ziós tér. Az n természetesen bármely természetes egész szám
lehet. Ha n = 1, akkor éppen az 1 elemű vektorok terét, azaz
a számegyenest kapjuk a térfogalom általánosításaként.

Az összes n-elemü vektorok egy végtelen halmazt alkotnak.
Jelöljük ezt a halmazt L-el, illetve ha azt is fel kivánjuk
tüntetni, hogy e halmaz az n-komponensü vektorok halmaza, ak-
kor az I^-jelölést használjuk^

Iái a továbbiakban egy speciális halmazzal a lineáris tér-
rel fogunk foglalkozni. Magát a lineáris teret nehéz elkép-
zelni, hiszen magát a tér fogalmat is legfeljebb csak három
dimenzióig tudjuk elképzelni és geometriailag ábrázolni, a
háromnál több dimenziós teret nem tudjuk szemléltetni. A li-
neáris tér kifejezést tehát képletes értelemben használjuk
és a következők szerint definiáljuk:

Az L halmazt lineáris térnek nevezzük, ha elemei a követ-
kező feltételeket teljesitíkT

a. / Az_ L elemei között értelmezve van az összeadás és a

skalárral való szorzás művelete.

Ha tehet a_-̂  és B_^ vektorok n-komponensü vektorok, akkor

azok elemei az 1^ halmaznak, azaz:

a_6 L^ és b 6 1^

s ekkor e vektorok összege és bármely n-komponensü vektorok
összege, illetve adott n-komponensü vektor bármely skalárral
való szorzata szintén n-komponensü vektort eredményez, azaz
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»

olyan rektort, amely szintén eleme az I^-nek, vagyis ha

a_e 1^ és t € L n , akkor:

a + b £ L , és ha:

a_6 1^ és x skalár# akkor ax = xa_€ L , vagy másként

jelölve:

a. b £ \ = » a + £6 1^

a_G Ln

A fentiekből az is következik, hogy az L elemeinek bár-
mely lineáris kombinációja szintén eleme az L halmaz-
nek, azaz:

Mindezeket az előző fejezetben is megismertük.

b./ Az előbbi két műveletre érvényes a kommutativitás,
az asszociativitás és a disztributivitás törvénye.

Eszerint ha tetszőlegesen kiválasztott vektorok n-kompo-
nensüek, tehát L - ek, azaz:

akkor azokra vonatkozóan érvényesek az alábbi törvényszerű-
ségek:

a_ + b = b_ + a_
_„ „_ ' kommutativitáa

/g_ + b/ + c = a + /h + c/
/xy/ a = x /ya/ asszociativitás

/x + y/ a = xa_ + ya_
x /a + b/ = xa + xb disztributivitás
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c. / Az L halmaznak van nulla eleme, az n-komponensíi

zérusvektor, amelyre igaz, hogy azt az L halmaz

bármely eleméhez adjuk, azt változatlanul hagyja,

azaz ha: .

a_61 akkor §. + £ = § .

&./ Ha az §.€ l n halmaznak, akkor igaz, hogy

1 • a_ = §_ • 1 = a,

-1 • a_ = a_ • /-l/ = -a_ és

la_ + /-l/a = 0

A fentiekben megfogalmazott négy feltétel teljesülése e-
setén tehát a halmazt lineáris térnek nevezzük. E néjgy fel-
tételt természetesen nem csak vektorok, de mátrixok is tel-
jesithetik, igy nem csak a vektorokkal, de a mátrixokkal
kapcsolatban is beszélünk lineáris térről.

3.2. Az altér fogalma

Az L lineáris téren belül mindig létezik egy részhalmaz,
amely a lineáris térre vonatkozó négy feltételt teljesi-
ti. Ez a részhalmaz az L altere. Ha az L térből kiválaszt-
juk az:

—•1' —-2' * * *' —-k

vektorokat, akkor e vektorok összes lehetséges:

lineáris kombinációi /ahol x,, x 2, ..., x^ valós számok/

az n-elemü vektorok végtelen halmazát jelentik. Ezt a hal-
mazt L'-el jelöljük és az I alterének nevezzük. Az L^ tar-

ralmazza a zérusvektort is, hiszen ha x-,=x9= ... = x v = 0,
akkor: . x

• Ei° + 2.2° + • • • + S-k̂ 1 = —

Ez /amikor minden skalárszorzó zérus/, a zérusvektor trivi-
ális előállításának módja.

Természetesen az L' altér részhalmaza az L̂ . lineáris tér-
nek, azaz:
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L n £ L n Ha:

de L> Ln L n *

/ahol 0 az egyetlen nullv.ektorból álló zérusaitér/, akkor

az L"-taz L valódi alterének nevezzük. A zérusaitér éa maga

az í lineáris tér nem valódi altér. Az 1^ altér önmaga is

lineáris tér.

Egy p • ej tipusú A mátrix oszlopvektorainak összes lineá-
ris kombinációi az Ip lineáris tér alterét állitják elő, mig
sorvektora inak összes lineáris kombinációi az Lq lineáris al-
terét. Beszélünk tehát az oszlopvektorok, illetve a sorvekto-
rok által generált altérről. Az előbbit az A mátrix oezlopvek-
torterének, az utóbbit pedig az A mátrix sorvektorterének ne-
vezzük. Ha például:

5 3

6 5 4

3 2 5

0-2
akkor az:

vektorok oszlopvektorteret, az :

a| = [6, 5, 4, 8]

a.3 = [3, 2, 5, 1}

vektorok pedig sorvektorteret alkotnak.

3.3. Vektorok lineáris függetlensége, függősége

Már ismerjük, hogy az a,, ag, ..., a^ n-komponensü vek-

torokból és az x,, Xgj •••> x. skalárokból /tetszőlegesen

megválasztott valós számokból/ képzett:
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kifejezés által meghatározott vektort az adott vektorok li-
neáris kombinációjának nevezzük. Mivel:

—J- 0a„—£ 02* = 0

igy az összes lehetséges lineáris kombinációk között a zérus-
vektor mindig szerepel. Ez egyben azt is jelenti, hogy ae:

vektoregyenletnek mindig van megoldása. Az:

0

megoldást /amikor a skalárszorzók mindegyike zérus/ triviá-
lis megoldásnak nevezzük. Ha az:

= 0

egyenletnek csakis triviális megoldása létezik, akkor az:

—"]_ y —2' * * * ' —k

vektorokat lineárisan független vektoroknak nevezzük. El-
lenkező esetben lineárisan függő vektorokról beszélünk. Szo-
kás azt mondani, hogy az adott vektorok lineárisan független,
vagy lineárisan függő rendszert alkotnak. Legyenek:

0

2

3

Lineárisan függetlenek-e az adott vektorok? Képezzük az:

xa_ + yb + zc_ = £

vektoregyenletet, vagy részletesen felirva:

2

3
1

» * =

- 1

4
- 1

2

3
1

+ y

- l

4

i-i

+ z

0

2

3
=

0

0

0

formát, ami egyértelmű a következő egyenletrendszerrel:

2x - y = 0
3z + 4y + 2z = 0
x - y + 3z = 0
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s ha ezt megoldjuk, kapjuk hogy ,

x = 0, y = 0, z = 0,

tehát az adott vektorok lineárisan függetlenek.

lineárisan független vektorok mindig az egységvektorok,
mert a 0 vektort csak triviális módon képesek előállítani,
vagyis:

Oe-1 Q-3 = —* Az:

5~
2

- 1
_3_

» 5.=

" 1
3
2

- 2

2
-3
••3

i

» &=

i
-7

0
- 8

vektorok viszont nem lineárisan független vektorok, hiszen
ezek:

2a. - 3b - 4o + d

lineáris kombinációja zérusvektort eredményez," azaz:

" l"

-7

0
2

- 1

3

lo"
4

- 2

•» 3

" i
3
2

- 2

-3~
-9
-6

- 4

2

-3

i-i

-8~
12

8
+

" l "
-7

0
-8

0~
0
0
0

vagyis az adott vektorokkal a zérusvektor nem csak triviá-
lis módon állítható elő, sőt az adott esetben nincs is zé-
rus skalárszorzónk. Az sdott vektorok tehát lineárisan füg-
gő rendszert alkotnak.

Néhány tétel a lineárisan független, illetve függő vekto-
rokkal kapcsolatban:
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a./

b./

Lineárisan független vektorok között a zérusvektor
nem szerepelhet, hiszen ennek nem nulla skalárral
való szorzata is zárusvektort eredményez, s lehető-
vé teszi, hogy a zérusvektort akkor is előállítsuk,
ha nem minden skalárszorzó nulla.

részhalmaza ugyancsak lineárisan független rendszert
alkot.

Ha n lineárisan független vektorok közül elveszünk k vektort,
ahol k>n, akkor mind a kiválasztott k vektor, mind a visz-
szamaradó n-k vektor lineárisan független rendszert alkot.

, a lineárisan független vektorok.Legyenek a_-̂, a_2, ... ,

Hagyjuk el a^ vektort. A maradék a_2> a,, ... , a^ vektorok

is lineárisan függetlenek kell hogy legyenek, mert ellenkező

esetben csak az a_-̂  vektor hozzáirásával tudnánk lineáris kom-

binációjuk segítségével a zérusvektort előállítani, mégpedig

ugy, ha s, vektor együtthatója x, t 0 volna. Mivel azonban az

adott vektorok a_-̂ -től S.n"i£ lineárisan független rendszert

alkotnak, igy x^ = 0, vagyis:

= 0

üz viszont ellentmondáshoz vezetne, ha a maradék nem lenne li-
neárisan független. Például:

4
-3
- 2

+ 0
Y

i

2
+ 0

1

1

1

r°= 0

k
lineárisan független vektorok közül bármely vektort /vektoro-
kat/ elhagyjuk, a maradék vektorok szintén lineárisan függet-
len vektorok, például a:

3
1

2

+ 0

1

1

1
=

0

0

0

vektorok csak zérus skalárszorzókkal vezetnek zérusvektor-
hoz.
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°»/ lineárisan függő vektorok közül legalább az egyik
Kifejezhető a többiTTineáris kombinációjaként.

Tegyük az a.-,, Sg***"*—k ^-i^árisan függő vektorokat, Ez
azt jelenti, hogy általuk a zérusvektor nem csak triviális
módon állítható elő, vagyis az:

IiBi = 0

kifejezésben nullától eltérő együttható /skalárszorzó/ is ta-
lálható. Tegyük fel, hogy:

x-, * 0. Ekkor azonban:

xT

Vezessük be a következő jelöléseket:

2 "3 és akkor:

Vagyis az a.-, vektort kifejeztük a iöbbi vektor lineáris
kombinációjaként. Legj'enek adva az:

5

2

-1

_3_

vektorok. Mivel:

L-2J

2
-3
-2

1_

, d_ =

1
-7

0
-8_

- 4e

as adott vektorok lineárisan függő rendszert alkotnak, s
közülük legalább egy vektor kifejezhető a többi lineáris
kombinációjaként.

Válasszuk a többi vektor lineáris kombinációjaként kifeje-
zendő vektornak a b vektort, tehát:



• - 1 0 3 -

-3b = -2a. + 4c. - d. és

2 _ 4 _ . 1 *b vagyis

£- J

"5"
2

- 1
3

- í
2

_o

-2
1

1
+ 7

l

-7
0

- 8

10

_ 2

6

8

12

8

_"7_

+

i

0

8
" 7

-

" f
7
6
7
6

" 7

1

3

2

- 2

tehát eredményül a b vektort kaptuk.

d./ Ha az adott nelemű vektorok közül az egyik kife-
jezhető a töbti lineáris kombinációjaként, akkor
az adott vektorok lineárisan függő vektorok.

Legyen adva, hogy:

A baloldal olyan lineáris kombinációt ahol nem minden ska-
lárszorzó nulla, ugyanis i-̂  = 1, tehát az adott vektorok

lineárisan függő rendszert alkotnak.

3.4. A vektorrendázer rangja

A vektorok halmazt alkotnak. Az azonos száma elemet
/koordinátát/ tartalmazó vektorok véges halmaza rektorrend-
szert alkot. Ezzel kapcsolatban fontos szerepe Tan a rang
definíciójának.
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.. • s Sij- vgfctorrendsger rangja r lia kiválaszt-

j-ató belőleineg? r lineárisan független vektort tartalmazó
— --•-""-"<-'- - Ve Darmi\.ur"'r-Eifl ~*ODD vektorból álló részhalmaza
k r lineárisan fv.?§o"Jrei-!.ásaer̂ ~aT£ot. A vektorrendszer rang-
ján tehát a vektorrendszeroentfelvehető lineárisan független
rektorok maximális számát értjük. Ha tehát egy vektorrendszer
rangba pl. 6, az azt jeienti5 hogy az adott vektorrenáazerben
S lineárisan független vektor vehető fel, s ehhes a vektorrend-
saer bármely vektorát hozzávéve, már 6+1 vektor lineárisan
függő less. A rangot r-rel jelöljük, miszerint r vektor line-
árisan független, r+1 vektor már lineárisan függő.

A vektorrendszer rangjával kapcsolatban bizonyítás nélkül
".ahány tétel:

a./ Ha a vektorrendszer rangja r« akkor a vektorrendszer
bármely vektora egyértelműen előállítható a rendszerből tet-
szőlegesen kiválasztott r darab lineárisan független vektor
lineáris kombinációjaként, /Az egyértelműség azt jelenti, hogy
2 kiválasztott lineárisan független vektoroknak csak egyetlen
rlyan linsáris kombájiáoúíju'-: "sn, amely a kérdéses vektort e-
lőállitja./

b./ Ha egy vektorrendszerből olyan vektort veszünk el, a-
aely kifejezhető a többi vektor lineáris kombinációjaként, ak-
kor a vektorrendszer rangja változatlan marad.

c./ Ha egy vektorrendsserhez olyan vektort csatolunk, a-
ssly kifejezhető az ereceti vektorok lineáris kombinációja-
•íáat, a vektorrendsaer rangja ugyancsak változatlan marad..

d./ Pia az a_2_3 &>: -•--<= t> s^ vektorrendszer vektorai mind

slőáxlithatók b,, £g9 a.. ,. b̂ . vektorok lineáris kombináció-

jaként, akkor az a.-,, ao,; „o. , a_j, vektorrendsser rangja leg-

- alj ebb p„

Slaenzió és 'bá

A lineáris teret nem a ranggal9 hanem a dimenzióval jelle-
sziik,, A aiaenziő* i.ísor.lóképpen definiáljuk, mint a vektor-
nűszer rangját.

i z l lineáris terst - :"lge:asióa:--;ak mondjuk, ha az L-ben

Az n elamii vektorok tera n dinanziós, ami szerint n elemű
vektorok között n lineárisan független ve'itort vehetünk fel.
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Ilyenek például az n elemű egységvektorok:

ex = [l, 0, .... o]
 T

ê  «= [o, 1, ..., o] T

e^ = | 0, 0, ..., lj

n-nél több lineárisan független vektort viszont az n elemű
vektorok között nem lehet felvenni.

Az n dimenziós lineáris teret L -nel jelöljük. Bárhogyan
is veszünk fel az ln-ben n lineárisan független vektort, a-
zok bázisát alkotják az L^-nek. A bázis alapvető tulajdonsága,
hogy a tér bármely vektora kifejezhető a bázis vektorainak
/az úgynevezett báziBVektoroknak/ lineáris kombinációjaként,
mégpedig egyértelműen.

Ha tehát a b-̂ , bg, ..., b^

vektorok az L^ egyik bázisát alkotják és a £ vektor is eleme
az L-nek, akkor találhatók olyan

skalárok, amelyekre nézve teljesül a

egyenlőség, s ezek a skalárok egyértelműen meghatározottak.

A o-̂ , c 2 > ...» o n skalárokat a o vektor koori&aátálnak.
mégpedig a b,, bg, ..., K, bázisra vonatkozó koordinátáinak
nevezzük.

Bázist alkotnak az e,, e^, ..., e^ egységvektorok is,
amit triviális bázisnak nevezünk, mivel a koordináták ebben
a bázisban minden külön számitás nélkül rendelkezésünkre ál-
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lanak. Ezek a koordináták ugyanis nem mások, mint a kérdéses
vektor komponensei. Az:

-,T
L, a 2, ...» a n vektornak az:

e bázisra vonatkozó koordinátái tehát az:

skalárok. E megállapitáa egyértelmű és könnyen ellenőrizhető
az:

— — öaszefüggéssel.

Az L^ lineáris térnek mindig van olyan részhalmaza, amely

önmagában véve is lineáris térnek tekinthető. Az ilyen rész-
halmazt, mint tudjuk, az L n alterének nevezzük. Az L adott:

vektorainak összes lehetséges lineáris kombinációi, azaz az:

alakban felírható vektorok például mindig alteret alkotnak
/x-,, i„, ...,x-. tetszőleges valós számok/.

Bebizonyítható, hogy a definiált vektorok halmaza eleget
teaz a lineáris térrel szemben támasztott követelményeknek.
Ha bevezetjük az:

é. ~ | S.l» 2.2' •••» Sn é s

x = x^, 22» '"' x jelöléseket, az előbbi s_ vektor

£ = A x

alakban is felirható, ahol A egy n • k tipusu mátrix, x pedig
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egy tetszés szerinti k elemű vektor. Az összes lehetséges
s vektorok által meghatározott alteret az A oszlopvektorai
által generált altérnek nevezzük. Jelöljük~ezt az alteret
L'-lel. Azt pedig, hogy ez az L' az A oszlopvektorainak li-
neáris kombinációjaként előállitható~s vektorok halmaza! a
következőképpen szimbolizáljuk: ~

L' = {s_| s_ = A x}

Az L' feltétlenül részhalmaza I^-nek, azaz:

Az L* dimenziója megegyezik az A oszlopvektoraiból alko-
tott /tehát a generáló vektorokból""alkotott/ vektorrendszer
rangjával, ami természetesen nem lehet nagyobb n-nél. Ha az
L' dimenziója történetesen valamely n-nél kisebb természe-
tes saám, akkor az L' halmazt az I_ valódi alterének nevez-
zük. Ha az L' dimenziója n, akkor:

vagyis az L* nem valódi alteret alkot. Mint már ismerjük,
altérről beszélünk akkor is, ha:

A = 0

vagyis amikor L' egyetlen elemből áll, a zérusvektorból.
Ez esetben:

V ={0}

szimbólummal jelölünk. Ez a zéruaaltér. amely ugyancsak nem
valódi altér.

3.6. A mátrix rangja

Minden mátrixszal kapcsolatban beszélhetünk két speciá-
lis altérről, mégpedig az oszlopvektortérről és a sorvek-
tortérről. A sorvektortér és az oszlopvektortér dimenziója,



- 108 -

tragy ami ugyanaz, a sorvektortér és az oszlopvektortér rang-
ja bármely márteíxra nézve megegyezik. Ezt a közös számot ne-
vezzük a mátrix rangjának és jelöljük r/A/-ral.

Eszerint valamely A mátrix rangján az oszlopvektoralból,
illetve sorvektoraibóT alkotott vektorrendszer rangját ért-
jük.

A mátrix rangjának meghatározására a későbbiekben egy
jól kezelhető szarnitási eljárást mutatunk be, az un. elemi
bázistranszformációt. Előbb azonban még megismerkedünk né-
bány kérdéssel a mátrixok rangjával kapcsolatban.

A rang ismeretében a kvadratikus mátrixokat két csoport-
sa sorolhatjuk, mégpedig a szinguláris és a nem-szinguláris
mátrixok csoportjába. Ha egy kvadratlEüs mátrix rangja ki-
seVb. mintrendje/oszlopainak, illetve sorainak szama/, ak-
kor a mátrixot szingulárisnak, ellenkező esetben nem-szingu-
lárisnak nevezzük. A nem-szinguláris mátrixnak tehát mind az
bszlopvektorai, mind a sorvektorai lineárisan független rend-
szert alkotnak. A szinguláris mátrixoknál ezzel szemben mind
as oszlopvektorok, mind a sor?ektorok rendszere lineárisan
függő.

A mátrixok rangjával kapcsolatban gyakran témaszkodhatunk
az alábbi megállapításokra:

a./ Egy mátrix rangja nem lehet nagyobb sem oszlopainak,
sem pedig sorainak számánál. Egy 5 • 3 tipusu mátrix rangja
legfeljebb 3.

b./ A diagonális mátrixok rangja megegyezik a zérustól
különböző diagonális elemek számával. Az:

"5 0 0 Ol
° ° ° ° ] mátrix rangja 3.
0 0 0 6j !

Egy diagonális mátrix tehát csak akkor nem-szinguláris,
ha a űiagoaális elemei líözött nem szerepel nulla.

c./ A kvázidiagonális mátrixok rangja egyenlő a diago-
nális blokkok rangjának összegével.

&./ Egy trianguláris mátrix akkor és csak akkor szingu-
láris, ha diagonális elemei között 0 is található.

e./ Az összeg rangja nem lehet nagyobb a tagok rangjá-
nak összegénél, azaz:
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f./ A szorzat rangja nem lehet nagyobb egyik tényező
rangjánál ssn. azaz:

min. r /A k/

g./ Ha a p • r tipusu A mátrix rangja r és az r • q
tipusu B mátrix rangja ugyancsak r, akkor az A B szorzat
rangja Ts r, vagyis ha: ~" ~

r /A/ = r /B/ = r

/p-r/ /r-q/ akkor:

r /A B/ = r.

3.7. A mátrixok f aktorizáció.ia

Ha valamely adott mátrixot fel tudunk irni az

A = A-, Ao

összefüggésnek megfelelően két mátrix szorzataként, akkor
az A mátrix egy faktorizációja áll előttünk. /Termeszéte-
sen'~a faktorizáoTonaT~tSWTenyeaő is számbaj öiiet, mi azon-
ban csak a két tényezőre való felbontásra forditjuk a fi-
gyelmünket. /

Bárhogy is történjen egy mátrix faktorizálása, a tényezők
rangja nem lehet kisebbsiaint az aáott mátrix rangja. Ebből
az következik, hogy az ilyen felbontásban az első tényező
oszlopvektorainak száma5 ill. a második tényező sorvektorai—
nek száma legalább annyis mint az adott mátrix rangja. Ha
az első tényező oszlop^ektorainak száma és ugyanakkor a
második tényező sorvektorainak száma is megegyezik az erede-
ti mátrix rangjávals akkor minimális felbontási'ói. beszélünk.

Az A minimális felbontása az:

A = A, A„

pq pr i-q

egyenlőséggel szimbolisilható. ahol r = r /kJ

A minimális felbontásnak a következő tulajflonságai van-
nak:



a./

rektorai, mind az
,saert alkotnak.

/A_2/ = r /A/s tehát mind az A^ oszlop-

~ sorvektorai lineárisan független rend-

b. / Az A-, oszlopvektorai bázisát alkotják az A osz-

lop^ektorterének, az Ag sorvektorai pedig bázisát alkotják

az A sorvektorterének.

e./ Az Ag oszlopvektorainak komponensei az A mátrix osz-

lopvektorainak az A-, által meghatározott bázisra vonatkozó

Koordinátái, az A, sorvektorainak komponensei pedig az A sor-

rektorainak az A„ ált
ordinátái.

meghatározott bázisra vonatkozó ko-

A minimális felbontást bázisfaktorizációnak is szoktak ne-
vezni. A bázisfaktorizáció igen jól nasználható a lineáris
egyenletrendszerek megoldásánál.

3.8. Az elemi bázistransaformáció

Amikor az L egy adott bázisából egy másik bázisba térünk

át, bázistranszformációról beszélünk. A bázistranszformáció
legegyszerűbb esete az, amikor az adott bázisnak csak az e-
g?ik vektorát cseréljük ki. Bz az elemi bázistranszformáció,
"agy röviden elemi transzformáció.

Legyenek az L, lineáris tér bázisvektorai a következők:

2.1 2-2

na:
Mivel az Hí21! + S.?2? + ~3X3 = — c sak akkor áll fenn,

z 1 = s 2 = z 3 = Os

független vektorok;
alkotják.

az a_n j a_2, a, vektorok lineárisan

tehát az l- lineáris térnek bázisát

Válasssunk egy tetszőleges £é.L-, vektorts ahol c_ / £ és

cseréljük Iti ezzel az előbbi vektorok valamelyikét /pl. §_-,-
et/ ágy,, -logy a c_s a_2., a_, rektorok is bázist alkossanaTc.
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Mivel az a_-p a_2, a, vektorok lineárisan független vekto-

rok, tehát L, bázisát alkotják, a c vektor / c í L , / kife-

jezhető az a^, g_2, a., bázisvektorok lineáris kombinációja-

ként, azaz: . .

2. = ciS.i + °2—2 + C3—3

Mivel c j! 0, a c vektornak legalább egy nullától különbö-
ző komponense~Van. Tegyük fel, hogy c^ ? 0. Ekkor viszont

a-̂  kifejezhető a £, a^, a_o vektorok lineáris kombinációja-

ként, azaz:

1 °2 °3 -
1 = ° " 51 a2 " Sí 3 '
Tegyük fel, hogy x az L, lineáris tér egy tetszőleges vek-

tora, amely kifejezhető az a^, a^, a« bázisvektorok lineáris

kombinációjaként, vagyis:

írjuk most a, helyébe az előbbi kifejezést, tehát:

= i - " A fe" öi 3 ) X i + 2 2 2 + 3*3 é s i i m e n :

s l \ / xl

Most tehát megkaptuk a tetssőleges x vektor kooráinátáit
a c_, a_2s S.3 bázisvektorokra. Termeszetesen az a^ 'agy a, vek-
torokat ugyanigy kicserélhettük volna a £ vektorral. Másrészt
a bázistranssfonsációt nemcsak c-̂  ̂  0, de c2 9? 0, vagy c, 4 0

esetén is végrehajthattuk volaa, vagyis annyi különböző mó-
don, ahány O-tól különböző koordinátája van a £ rektornak
az adott bázisra vonatkozóan^



Vizsgáljuk megs hogyan lehet az elemi básistranszformá-
ciót elvégezni. As n dimenziós c_ vektor felírható a:

i—1

formában, ahol a c.-k az egységvektorok által megnatáro-

3CS» bázisra vonatkozó koordináták. Ha c_ 4 £, akkor a o.

skalárok között van nullátói különböző ia. Tegyük fel, hogy
c 4 0. Ekkor viszont e, kifejezhető az előbbi egyenletből,

e
-2

A £» S.2' *** ' ™n v e k t o r r e n d s a e r lineárisan független
rendszert alkot. Ugyanis, ha az: -

egyenletnek lenne a triviálistól különböző megoldása is,
akkor a e vektort az e o. .... e vektorok lineáris kombi-
nációjaként is elő lehetne állítani, ami viszont ellentétben
áll a o 1 4 0 feltétellel.

Aa előbbiekből következik, hogy ha a^, a_2, ..., a^ egy
tatszőleges bázis} akkor annak feltétele, hogy az a_̂  bázisvek-
tsrt kicserélhessük :i dimenziós tér tetszőleges c vektorával,
as, hogy a o vektor i-edik komponense nullától különböző le—
gyen. ~

Hogyan alakulnak a vektorok koordinátái, ha egyik bázis-
ból a másikba térünk át? Legyenek x vektor a^, &.o'"''2zi
siaisre v'o^atkoaó koorUi^átái z-,, x?,...,x . Eszerint te-
hát: •"•

gy fel, hogy c vektor ennek a lineáris térnek egy
Bőlagss nullától~külonböső vektora, azaz c_ 4 0. A o_

sktor felírható a "báuisv'ektorok segítségé vei, "azaz: ~

cv&,
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ahol c. a c_ vektornak a bázisra vonatkozó koordinátái. Mi-

vel £ 4 0, igy a c^ között van legalább egy, amely nem nul-

la. Legyen ez a ck. Ebben az esetben a bázisvektorok közül

az a_k vektor kicserélhető a £ vektorral, vagyis :sz a^, a_2>'*

.., £, ..., a^ vektorok szintén bázisát alkotják a lineáris

térnek, ugyanis ezek lineárisan független vektorok. A vek-
torcsere feltétele, hogy a £ vektornak az a_k-ra vonatkozó

koordinátája cv 4 0 legyen. Mivel cv 4 0» a c vektorra

felirt lineáris kombinációból a^ vektort kifejezhetjük,azaz:

-k ok l-l ck 2-2 • " o k- ••* ck n-a.

Most az a. értékét az x vektorra felirt egyenletbe behe-

lyettesitve kapjuk, hogy:

x = x ^ + x 2a 2 + ... +

és szorzás, összevonás után:

xl " 3^ °ll Sí + U 2 ~ c^
 C2 S

xk f xk 1+ -= c + ... + x_ - —- c_ck - [_ n ck nj
vagyis az egyenlet jobb oldalán zárójelben lévő együttha-

tók /skalárok/ adják az x vektornak az új bázisra vonatkozó
koordinátáit. .

Ha bevezetjük az:

— = á" jelölést, az előbbiek egyszerűbben felírhatok a:
cck

y'—2

formában. Az elmondottakat a"következő táblázatos formában
tudjuk szemléltetni:
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I. ' II.

Régi Tetszőleges x Uj Tetszőleges
bázis — régi koord." bázis — x uj koord.

x x ax 0

x 2 a 2 0

Látjuk, hogy mivel £ vektort bevontuk a bázisba az a_k
vektor helyett, megváltoztak a £ vektor koordinátái, vagyis

a régi koordináták helyére az ê . egységvektor koordinátái

léptek. Ugyanis a £ vektort az uj bázis vektoraiból a:

formában tudjuk előállitani. Az I. táblázat tehát a c,
x vektoroknak a régi bázisra vonatkozó koordinátáit, a Ti.
Táblázat pedig az uj bázisra vonatkozó koordinátáit tünte-
ti fel.

A c^ koordinátát, amely jelzi, hogy a £ vektort melyik

bázisvektor helyére vonták be, generáló elemnek nevezzük.
Ez csak nullától különböző koordináta lehet. A generáló e-
lemet /kitüntetett szerepét hangsúlyozva/ a táblázatban beke-
reteztük.

Az elemi bázistranszformáció során az x vektor uj koordi-
nátáit két lépésben számítjuk ki.

Az első lépésben a generáló elemmel elosztjuk az x vek-
tor megfelelő koordinátáját. Az igy nyert hányadost ̂ "vel je-
löltük.

A következő lépésben meghatározzuk az x vektor többi
koordinátáit, ugy, hogy a régi koordinátákból rendre levon-
juk az uj bázisvektor régi koordinátáinak 6-szorosát.
/Természetesen, ha o =o, vagy ha az uj bázisnak a megfelelő
régi koordinátája 0, az x koordinátái nem változnak meg./

A gyakorlatban mindig az egységvektorok által meghatáro-
zott bázisból, az agynevezett triviális bázisból indulunk ki,
a tnnek rektoréit lépésről lépésre cseréljük ki alkalmasan
megválasztott uj vektorokkal. Legyenek adva az:
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1
4
3

» £. =
11
17
19

3 2
2 , a2 = 1
4 2

vektorok és legyen:

b = x, a_-̂  + Xga^ + X3S.3

Cseréljük ki az e_-,, £„> £3 bázisvektorok valamelyikét és

számítsuk ki az a^ vektorok uj koordinátáit. Vonjuk be a bá-

zisba mondjuk az a^ vektort és legyen a generáló elem az a^

vektor második koordinátája /a táblázatban bekereteztük/.

Az
zők:

vektor uj koordinátái alapján a követke-

$ = íjr = 0

2 - 0,5 • 3 = 0,5,

2 - 0,5 • 4 = 0.

ugyanigy az a-, koordinátái:

I - 2 • 3 = -5,

3 - 2 • 4 = -5

és a b vektornál:

= ̂  = 8,5^

II - 8,5 • 3 = -14,5

19 - 8,5 • 4 = -15,0

Foglaljuk az adatokat táblázatba /nyillal jelöljük a bázis-

cserét/:
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II.

Hégi
bázis 2.1

1 H l
l

4 ]17

3 |19

Uj
bázis

-1

->ai

3̂

£2

0

1

0

o,
o,
0

2

5

5

S.3J
i

-5i-

21

-5j-

14,5

8,5

15,0

Bevonhatunk a bázisba eg? másik vektort is. Mindegy,
hogy melyiket, de célszerű lehet ugy választani, hogy kedve-
ző legyen a generáló elem, hogy egyszerűbben tudjunk számol-
ni. Vonjuk be a bázisba a,-at és válasszuk generáló elemnek

annak harmadik koordinátáját.

II. III.

Régi
bázis

-1

2-1

«-ft3

e 2

0

1

0

a2

0,5

0,5

0

-5

2

ED

-14,

8,

-15,

5

5

0

Uj
bázis

Si

2-1
->a 3

^2

0

1

0

S-2

0,5

0,5

0

S-2

0

0

1

Ik
1
|0,5

|2,5

i 3
i

Megfigyelhetjük, hogy mivel ao-nél S *> Ht = 0, az a,
koordinátái nem változtak. ~d "° ~á

Bevonhatjuk a bázisba ap-t is. Válasszuk generáló ele-
mül ennek első koorüinátá"3at. Ekkor a következőt kapjuk:

III. IV.

Régi
bázis

<*=ex

a-i

—2 Sí!

o [03
1 0,5

0 0

e

0

0

1

3Í*
1
|0,5

1

I 3
1

Uj
bázis

«*a 2

Sl

-3

Sa

0

1

0

Sl

1

0

0

0

0

l

!k

!i
1
1 2

1

A b oszlopában találjuk a b vektornak az u^ bázisra vo-
natkoi'ő koordinátáit, amikoris mindhárom egységvektort ki-
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cseréltük az a_. vektorokkal. A kapott koordináták a:

b s= X n a-i + X o8o + X^Qri
1—1 c—d. 5—5

lineáris kombináció x-,, x 2, x, skalárjai és mint a táblá-

zatból látjuk, x-,=2, Xg=l és x, = 3. /Vigyázni kell a ska-

lárok sorrendjére./Az a^-nek megfelelő sorban lévő koordiná-

ta az x skalár, az a_2 sorban található az Xg skalár és a,

sorában az i, skalár. Eszerint:

V
2
4

+ 1
~ i

1
2

+ 3

1
4
3

=

"6"
4
8

+
' 2

1
2

+
3"

12
9

=

" l l
17
19

A triviális bázis szerint:

b = 11 e^ + 17 £ 2 + 1$ Íj' vagyis:

b = 11
1
0

0

1

0

+ 17

+

0

17

0

0
- ]

0

+ 19

+

0

0

19
=

0
0

1

11

17

19

Könnyen észrevehetjük, hogy a táblázat belsejében permu-
táló mátrixot kaptunksmelyet átrendezve, egységiaátrixhoz ju-
tunk.

Az egységyektoroknaK pillanatnyilag semmi szerepük nincs9
ezért azoi-:at eliiagyiiatjû ;. Ennek alapján a számításokat egy~
szerüsithetjük., Ilyeiíkor a táblázatokat nem ismételjük,hanem
egymás mellé irjuk és kevesebb munkával ugyanazon eredmény-
3 i t t t l

=5.8.3

3

i_2J
~

2

1

2

—3

j .

4
3

1 b | a P

I 11!Oj 5
;17 io ,5
i 19 i 0
i :

23

2

híj

1

-14,5!JÖ

8,5|0
-15, Oj

2

71
,5
0

b

0

2

,5
,5
3

b

1

2

3
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Megjegyezzük még a következőket:

A vektorok bevonásának sorrendje közömbös.

Egy m • n tipusu mátrix esetén /mint tudjuk, m a sorok
száma, n. pedig az oszlopok száma/:

ha m < n , nem tudunk minden oszlopot a bázisba bevonni,
csak legfeljebb m oszlopot,

ha m = n, akkor annyi /de legfeljebb m számú/ oszlop
vonható a bázisba, ahányszor sikerül a szabad sorokban zé-
rustól különböző generáló elemet választani,

ha m> n, akkor nem tudunk minden sorba uj vektort be-
vonni, mert nincs elegendő oszlopvektorunk.

3.9- A mátrix rangjának meghatározása

A bázistranszformáció megismerése után egyszerűen jutunk
el a mátrix rangjának meghatározásához.

Egy mátrix rangját ugy határozzuk meg, hogy a triviális
üí k
gját ugy
üí helye

gy g
bázis báziavektóyüí helyebe az adott mátrixnak annyi oszlop-
vektorát vonjuk be. amennyit csak lehet.

Vegyük például az:

4 l"

= I £i» £2* £

mátrixot és határozzuk aeg rangját:

Kiindulunk a:

Bázis

- 1
- 2

2

2

4

9a

4
1

2

2-3

1

4
3

táblázatból, majd először az a.-̂, majd az a^, stb. vekto-
rokat vonjuk be a bázisba mindaddig, amig ujabb vektor bevo-
nására lehetőségünk van. Ahány vektort tudunk a bázisba be-
vonni a triviális bázisvektorok helyére, annyi az adott
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mátrix rangja. Végezzük el a báziscseréket az előző pont-
ban az elemi bázistranszformáeióval kapcsolatban megismert
számítási eljárás szerint.

Bázis a.̂  a_g a,

ex dl 4 1 -' \
I. eg 2 1 4

e 3 4 2 3

Bázis

e,

1 2 0,5
0 El] 3
0 - 6 1

Bázis e, e o a,

£i 1 0 2,5

a 2 0 1 - 1

£3 0 0 |-5J

Bázis e^ e_2 e_3

8^ 1 0 0

a_2 o i o
a 3 0 0 1

Mindhárom oszlopvektort be tudtuk vonni a bázisba, te-
hát az adott mátrix rangja:

r / A / = 3

A számításokat most is célszerű az egységvektorok elna-
gyásával, leegyszerűsített módon elvégezni, azaz:
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—1 %i-

-Z &l

5-3 * $

ai

[U
2

4

£2

4

1

2

-3

1

4

3

2.2

2

EU
-6

—3

0,5

3

1

S-3

2,5

-1

El
Határozzuk meg az:

1
4
0
2

3
6
1
2

1
-2
-1
-2

mátrix rangját.

-1

S2 lé

^3

£4

S-l

4

0

2

a2

3

6

1

2

-3

1

-2

1

~2

$-2

3

EH

1-1

-4

-3

1

-6

1

-4

-3

-2

1

0

0

Az a, rektort már nem tudjak a bázisba bevonni, mert az

£, és az e.-re vonatkozó koordinátája nulla, márpedig mint

tudjuk O-át nem választhatunk generáló elemnek, tehát r /A/
= 2. ~

Határozzuk meg

A =

1

2

1

1

még az

2

3

1

2

1

1

-4

5

-1

-2

2

-4

2

3

-3

6

mátrix rangját.



S-2

a3

-1

0
2

1

1

2

3

2

>^3

1

1

-4

5

a,-4-

-1

-2

2

-4.

25

2

3

-3

6

S.2

2

-1

0

S-:

l

i

-5

4

> —4 —5

-1

0

3

-3

2

-5

4

S-.

-1

1

0
4

-1

0

3

-3

0

1

-4

4

24

-i
i
-i
0

25

1

0

1

0

Az _a. és .a, rektorokat nem tudjuk a bázisba bevonni az
» So> -S3 lektorok mellé, tehát a mátrix rangja:

r /A/ = 3

3.10. Bázt3faktorizáció

A 3.7. pontból ismerjük, hogy a mátrixokat tényezőkre,
mátrixok szorzatára tudjuk bontani. Mondottuk, hogy a mini-
mális felbontást bázisfaktorizációnak nevezzük. Az előbbi
pontban megismert száraitások alapján könnyen elvégezhetjük
a bázisfaktorizéciót is.

Vegyük az előbb már megismert:

1 2 1 - 1 2
2 3 1 - 2 3
1 1 - 4 2-3
1 2 5 - 4 6

mátrixot. Végezzük el a mátrix rangjának meghatározását
egyszerüsités nélkül.

Bázis

£l
eg

-3

^4

Si

0
2

1

1

S2

2

3

1

2

a3

r-i

1

-4

5

a4

-1

-2

2

-4

-5

2

3

-3

6
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Basis §•5

2a
Sz
2.3'

£4

Bázis

S-l

2.2

« 3

£4

Bázis

s-a
Sfi

-3

£4

1

0

0

0

2a

1

0

0

0

£X

1

0

0

0

2

EH
- 1

0

£2

0

1

0

0

£2

0

1

0

0

1

- 1

-5

4

col

- 1

1

lr±|
4

a-

0

0

1

0

- 1

0

3

™3

i ^4

- 1

0

-3

} 24

-i
-I
- ̂

0

2

- 1

-5

4

&5

0

1

-4

4

ag

1

0

1

0

írjuk fel a bázisba beront vektorokból az A^ mátrixot:

2 1

3 1

1 -4

2 5
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Az utolsó táblázat alapján felírhatjuk az:

1
0

0

0
1

0

0
0
1

r oszlopvektorból álló egységmátrixot, valamint a be nem
vont vektoroknak a lekötött sorokra vonatkozó uj koordinátá-
i alapján a:

-i
-i
2

mátrixot.

Tudjuk, hogy az a^, a_2j a, lineárisan független vektorok

•bázisét alkotják az oszlopvektorok által generált altérnek.
Az A mátrix minden oszlopa felírható tehát az A-̂  vektorai-
nak a^, a_2, a_j lineáris kombinációjaként, azaz:

1
2
1

1

2

3
1
2

l "
1

-4
5_

0
0

" l "

2

1

_ 1 _

1

2
1

1

2

3
1

2

1~
1

-4
5_

~o~
l
0

"2~

3
1

_ 2 _

a ^ = A-i e-i =

2 1
3 1
1 -4

1
1
-4



1 2 5

i 1 2 1

j 1 1 - 4

! 1 2 5

• • - 2

ill-:.
2

3

-3

vagyis ennek alat}ján at á
Írható fel:

-,-iátris a következők szerint

A = A, £,1S e » , e , , o-i, d , | vagsf m a s k e n t :
~ "^ L " ~'-' '- ~ J

A = A-, S^5 B I vagyis :
~ L * J

Vl 2 1*1 p

j s ! J"
I o -4- o

1 - 4 I !

2 5
I 0 0 1 - 4 1 1

; 1 2 I -1 2 |

,{ £ 3 1 - 2 3 !

| 3. 1 - 4 2 - 3 I

{_! 2 5 -4- 6j
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Készitsük el mégegyszer az előbbi mátrix bázisfaktorizá-
cióját, de ttgy, nogy a vektorokat ne sorba vonjuk be. Alkal-
mazhatjuk az egyszerűsített eljárást is, de tudjuk, nogy a
bázisba bevont vektor helyén egységvektorok szerepelnek, a-
melyeket az adott vektorral kicseréltünk.

a l
a 3

0
2

1

1

2-2

2

3

1

2

2-3

1

1

-4

5

24

- 1

- 2

2

4

2

3

-3

6

22

2

- 1

- 1

0

-3

- 1

-5

4

24

- 1

0

3

3

^5

2

- 1

-5

4

2.2

1

1

0
-4

24

- 1

0

3

3

25

1

1

0

0

2.1

2-3

£2

24

"í
2

~ 4
\
0

1

1

0

0

Most

A =

A =

t ehá t :

SQ. » &3

~ 1

2

1

1

2

1

1

1

- 4

5

1

x
-4

5

2.2

2 '

3

][

1

d

1

0

0

2 - 1

3 -2 -

1

2

2

i

0

x
0

;1
-3 !

£35 iij.» %

0 - { x

0 - | 1

1 | 0

vagyis:



Vigyázni kell természetesen a vektorok sorrendjére. Az

oszloptfektorok eredeti sorrendjét megkapjuk, lia a második és
a harmadik oszlopot felcseréljük.

3.11. Kompatibilitás

Ha az L n lineáris tér egy tetszőleges b vektora előállit-
ható az a,, a_2,..., a^ vektorok lineáris kombinációjaként, azt
Eondjuk, hogy a b vektor kompatibilis az a_-j_, a^,..., â . vek-
torok által generált altérre nézve, vagy másként a b_ vektor
benne fekszik az §_-,, a_p,.-., §.v vektorok által generált al-
térben. /A kompatibilitás latin szó, ösazeférhetőséget je-
lent./

Ha viszont a b_ vektor nem fejezhető ki az a_-̂, g_2»...» a^

vektorok lineáris kombinációjaként, azt mondjuk, hogy a b
vektoi inkompatibilis az a,, &_ ,..., k t k áltl
altérre nézve. — —d

j , gy a
vektorok által generált

A bázistranszformáció ismeretében a kompatibilitás problé-
mája egyszerűen eldönthető. Kiindulunk a triviális bázisból
és az a_-̂, a_2,..., a^ véstorokbói annyit veszünk be ebbe a bá-
zisba} amennyit csak lehetséges. A bevont vektorok a kérdéses
lineáris térnek bázisát alkotják^ s a számitásokból leolvas-
ható, hogy a b vektor kifejezhető-e az adott bázis segitsé-
gével fagy nemT

Legyen adva az:

,1
-J

a_j

mátrix ás vizsgáljuk neg, hogy a: b = 11, 19, 12

vektor kompatibilis-e az A mátrix oszlopvektorterében.

A bázistranszformáció során megismerteket alkalmazva, az
vektorokat rendre bevonjuk a bázisba, azaz:

Sázis

-í 2a

S-l
2

3

1

—2

ÍH
4

2

a-
—i
4

1

4

1 b

111
1
H9
| 12

- 1
2

El
-3

a-

4

-15

-4

b

3 1

-25

-10

-3
- 2

3

Hl

b

1

5

5

b

3

2

1
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Mivel a számitások szériát:

b = 2 + 3 a_2 + a.

vagyis a b rektor kifejezhető az adott bázisvektorok line-
áris kombinác'ió'jaként, a b rektor kompatibilis az a, ,£„,§_.,

vektorok által generált altérre nézve. Ez azt is jelenti,hogy
&í, A mátrix oszlopvektorai lineárisan függetlenek éa hogy
r/A/~= 3.

Csökkentsük most a b vektor harmadik elemét 5-tel, vagy-
is vizsgáljuk meg, hogy~a:

l, 19,

vektor kompatibilis-e az A mátrix oazlopvektorterében.

Bázis 2.1

2

3

1

2.2

0
4

2

2-3

4

1

4

b

1 1

19

7

- 1

2

El
-3

2-3

4

-15

-4

b_

11

- 2 5

- 1 5

2-3

- 2

3

5

b

1

5

0

A b vektor most is kompatibilis az A mátrix oszlopvektor
terére~nézve. Most azonban a * vektor" az a a v k t r
ral is kifejezhető.- ~

p
a-,, a ?, vektor-
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4. FEJEZET

Lineáris egyenletrendszerek megoldása éa mátrixok

Inverziója

4.1. LineárÍB egyenletrendszerek

Az

an xi

ismeretleneket tartalmazó

bi

a21 xl + a22*2

aml xl

egyenletek halmazát elsőfokil vagy lineáris egyenletrend-
szernek nevezzük. E halmaz m számú egyenletet tartalmaz n"
számú ismeretlennel, ahol az a^ együtthatók /az első inJTex

a sor, a második az oszlopindex/ valós számok.

Az a... együtthatók az

A =

all a12 " • aln

a21 a22 " • a2n

aml am2 • • a_

mátrix, az x. /j = 1,2, ..., n/ ismeretlenek az

X = X-j^.Xg, ...,XJ

és a b. /i = 1,2, ..., m/ együtthatók a

b = b-p b 2, ...» bj

vektor formában is felírhatok, azaz egyenletrendszerünk
rb'viden az

A x = b

formával is jelölhető, hiszen
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alla12 • " aln

a21a22 •

amlam2

In

2n

mn

xl

Xg

I
=

bl

y
m

azaz

allxl

a21xl
•

•

amlxl

•t* S-l O3CQ T • • • "t1

•

•
•

+ am2x2 + ••• +

Felírható még egyenletrendszerünk

«A +
vektoregyenletkánt

—2 £ —n

is.

alnxn

alnzn
•

•
•
amnxn

az

cn = -

Abban az esetben, ha n = m, vagyis ha az ismeretlenek
száma me§egyezeik az egyenletek számával, azaz ha az A
mátrix /úgynevezett együtthatómátrix/ kvadratikus, akfor
az egyenletrendszer reguláris, ellenkező esetben irregulá-
ris.

Ha a b-p b2,..., b m mindegyike nulla, vagyis b = 0,

akkor az egyenletrendszert homogénnek, ha pedig a b.

/i = 1, 2,..., m/ közül legalább egy nem nulla, vagyis

b_ / £, az egyenletrendszert inhomogénnek nevezzük.

4.2. A lineáris egyenletrendszer megoldása

Vizsgáljuk meg először a lineáris egyenletrendszer meg-
oldását általánosan. Egy lineáris egyenletrendszert megolda-
ni annyit jelent, mint meghatározni mindazokat az x vekto-
rokat, amelyek kielégítik az A x = b összefüggést? A meg-
oldás szükséges ás elégséges TeTtáteie, hogy a b vektor
benne feküdjek az A mátrix oszlopvektortersben,"vagyis a
b vektor kompatibilis legyen az A mátrix oszlopvektor-
Terére nézve. "~
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A mátrix faktorizációjánál láttuk^, hogy az A mátrix fel-
bontható az A, mátrix, valamint az |F, Dl mátrix szorzatára,
azaz L ~LJ

A = A

ás tudjuk, hogy az A. a bázisba bevont vektorokból alko-

tott mátrix, az E az r számú kicserélt vektor helyébe

kerülő egyságvektorokból alkotott egységmátrix, D pedig

a bázisoserébe be nem vont vektorok új koordinátáiból

alkotott mátrix, amely vektoroknál csak a felhasznált

sorok koordinátáit vesszük figyelembe.

Tegyük fel, hogy az

A x = b

egyenletrendszernél a b vektor kompatibilis az A oszlop-
vektorterére nézve, azaz az egyenletrendszer megoldható.
Legyen az A mátrix rangja r, azaz r/A/ = r. Ekkor viszont
az A mátrix faktorizálható az

k * h |ir, á]
összefüggés alapján, amiből viszont az következik, hogy

ahol a d komponensei a b vektornak az A. mátrix által meg-

határozott bázisra vonatkozó koordinátáit tartalmazzák.

Ha ugyanis b kompatibilis, akkor felírható r számú li-
neárisan független vektor lineáris kombinációjaként, va-
gyis felírható az A^ mátrix oszlopvektorainak lineáris

kombinációjaként, hiszen mint tudjuk, az A. éppen r line-
árisan független oszlopvektorból áll.

A fentiek alapján az

A x = b

összefüggés kifejezhető az

és az

formulával, vagyis A X |ir, ai 5 - A X d - b
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caak ekkor teljesül, ha

Képezzük most az x vektornak az A mátrix lineáris füg-
getlen ossslopvektoralra vonatkozó koordinátáiból ^vagyis
az első r komponenséből - az ŝ , = Ix^, Xg, ..., xj~ vek-
tort, azaz az úgynevezett kötött ismeretlenek vektorát, a
többi n - r • a komponensből pedig az x g = f^+^» ^ j . ^ '

vektort, azaz a szabad isméretlenekHvektorát.

E szerint az x vektort a következőképpen particionál-
tuk: ~

Ekkor viszont az

felírható az

formában, ami szerint viszont

Sr - d - D x s -

s ezt a formát az egyenletrendazar általános meaoldáaá-
nak szokás nevezni. Ebben az x̂ , komponensei a kötött is-

meretlenek, az x komponensei a szabad ismeretlenek. A

kötött ismeretlenek száma megegyezik a mátrix rangjával,
a szabad ismeretlenek száma pedig az egyenletrendszer
szabadságfokát adja ás ez az ismeretlenek számának és a
rangnak a különbségével egyenlő:

s = n - r

szabad ismeretlenek - azaz az x gg vektor - tetszőlege-

sen választhatók a kötött ismeretlenek SL, vektor - viszont

függ attól, hogy a szabad ismeretlenek értékét hogyan
választjuk meg.

Az egyenletrendszer megoldása tehát numerikus szempont-
ból csupán a D és a d konkrét meghatározását jelenti, ami
a 3.10. pont alapjánkönnyen elvégezhető.



- 133 -

4«3« A mátrixok Inverziója

Ismeretes előttünk, hogy az

y = a x

egyenletből az x kifejezhető az

x = J
formában. Ez viszont egyenértékű az

kifejezéssel, vagyis mindegy, ha "a"-val osztunk, vagy
annak reoiprokával szorzunk.

Ismeretes az is, hogy ha valamely számot reoiprokával
megszorzunk, eredményül 1-et kapunk, azaz

Az — számot az "a" inverzének is nevezik ás jelölésére

használjuk az a~ szimbólumot is.

Kvadratikus mátrixok esetén is beszélhetünk inverzről,
és azt /ha Istezik/ az

. A " 1

szimbólummal jelöljük. Ha az A mátrixot inverzével szoroz-
zuk, egységmátrixot kapunk eré"dményűl, azaz

A A" 1 = A"1 A = E

vagyis négyzetes A mátrix inverzén egy olyan a-edrendú
mátrixot ertünk, amelynek az A-val alkotott szorz-ata"
az n-ed rendű egységmátrixot ad.ja.

Ha az A kvadratikus mátrix ás van inverze, altkor az

A x = b

egyenlet az inverzmátrix ismeretében az

x = A" 1 b

formában is felírható. Az inverz mátrix tehát felhasznál-
ható lineáris egyenletrendszerek megoldására, ezért mielőtt
az egyenletrendszerek megoldását számszerű páldák segítségé-
vel is bemutatjuk, célszerű megismerkedni a mátrixok inver-
tálásával.
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Tekintsük az

A Z = E

speciális mátrixegyenletet, amit részletesebben felírva
kapjuk, hogy

á £i> A x2, ..., A x^ = e1, e_2, ..., e^

A kát mátrix akkor egyenlő, ha elemei rendre megegyez-
nek, vagyis; a következő egyenletrendszert kapjuk

á £1 = £1

A x = e— —n —n

Az egyenletrendszer mindegyik egyenlete n ismeretlent
tartalmaz, az együtthatómátrix viszont minden egyenletben
ugyanaz. Az egyenletrendszer csak akkor oldható meg, ha
az egyságvektorok mindegyike benne van az A mátrix oszlop-
vektorteráben, azaz, ha az egyságvektorok kompatíbilisak
az A oszlopvektorteráre nézve. Ez viszont csak akkor tel-
jesül, ha az A mátrix rangja megegyezik rendjével, r/A/ = r,
azaz ha a mátrix neBt-g.inguláris. Egy kvadratikus mátrix
tehát csak akkor invertá*l5ató, ha nem-szinguláris. SafnKu-
"["axis m^rixnak~HIn?s "inverze.

Az inverz mátrix numerikus meghatározásé az

Y A = S

nátrixegyenlet megoldását jelenti. Az első esetben a mát-
rix jobboldali, a második esetben a mátrix baloldali in-
verzéről beszélünk.

Szorozzuk meg azonban az

Y A = E • .

máírizegyenletet az X mátrixszal jobbról, azaz

Y A X = E X
Azonban

E X = X

és A Z = E
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amiből következik, hogy

I E = I, '

azonban mivel -~

1 I = I» ' • '
ezért

X = Y,

azaz a mátrix inverzánek meghatározás egyértelmű, vagyis
akár a jobboldali, akár a baloldali inverzét számítjuk ki
a mátrixnak, ugyanazon inverzmátrixot kap.iuk.

A bázistranszformáció ismeretében az inverz numerikua-
meghatározás már igen egyszerű. Induljunk ki az

A X = E

mátrixegyenletből, amelyből kaptuk az

egyenletrendszert, amelyet meg kell oldanunk, és a megoldá-
sul szolgáló X mátrixot az A jobboldali inverzének nevezzük.
Meg kell teháT keresni az E egységmátrix osslopvektorainak
az A mátrix által meghatározott, bázisra vonatkozó koordiná-
tái Tf. Mivel az A mátrix közös ás csak a jobboldali egységvek-
torok különbözőek, az egyenletrendszert egy táblázatba fog-
lalva egyszerre oldjuk meg. Hem kell ugyanis mást tennünk,
mint bázistranszformációval felcserélni az A és E mátrixok
szerepét. Technikailag ezt úgy végezzük, hogy egy íáblásat-
ba az A mátrix mellé felírjuk az e. egyságvektcrokat, azaz

az E egységmátrixot, és az A oszlopvektorait elemi básis-
transzformacióval rendre bevonjuk a bázisba, s minden
transzformációnál kiszámítjuk az E oszlopvektorainalt koordi-
nátáit a megváltozott 'bázisra vonatkozóan.

Határozzuk meg tehát az ,—

2 5 3

1 3 3

mátrix inverzét.
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foglaljuk táblásaiba az A mátrixot és írjuk mellé az E
egységmátyirM.. /Az x+ értékeket kiemeltük a fejrovatba.

fonjuk be rendre a bázisba aa A mátrix oszlopvektorait

s l

*10
z 2 2

*z
2

5

3

X 3

1

3

3

1

0

0

0

l-i

0

0

0

1

x 2

2

0
l

Z 3

1

1

2

1

- 2

- 1

0

1

0

0

0

1

x :

—i

i

H

1

1
I

i 5

Í-2
Í 1

-2

1

- 1

0

0

1

6

-3

1

-3

2

- 1

1

- 1

1

Tehát

6 - 3 1

-3 2 -1

i -1

A számítások helyességét ellenőrizzük az

A J. = E

alapján.

í 1

2

I

2 l )

5 3Í
3 3Í

i
| - 3

L 1

- 3 1

2 - 1

—1 1
_

-1°
1°
L

0

1

0

0

0

1

A számításokat egysserűbbea végezhetjük el, ha a követ-
kesőksppen óárunk els Felírjuk a következő táblázatot:

u l
U 2

xl
1
2

=2
C

5

X

I
3

I 1
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Ebben a táblázatban as x^, x 2, x^ szimbó3.ttaiok az un. pri-

mal változókat, az u-̂ , u 2, u^ szimbólumok pedig az un. duális

változókat jelentik. A primálváltozókhoz az A mátrix oszlop-

vektorait, a duális változókhoz pedig az E egységmátrix osz-

lopvektorait rendeltük. Az A mátrix invertálása felfogható

úgy, hogy megkeressük az E egységmátrix osslopvektorainak

az A oszlopvektorai által meghatározóit bázisra vonatkozó

koordinátáit. Ez azt jelenti, hogy fel kell cserélni primál

változók ás a duális változók szerepét.

A számításokat a következőképpen végezzük:

a./ Generáló elemet választunk a, /A generáló elem vá-
lasztásnál a eorread, -• hogy melyik os-zlopból ás
sorból választjuk - lényegtelen, a számítások vég-
rehajtása után azonban vissza kell tárni a helyes
sorrendhez* Tudjuk .azt is, hogy a generáló elem
nem lehet nulla, /üj táblázatot szerkesztünk, amely-
nek adatait a következőképpen határozzuk meg:

b./ A generáló elem helyébe beírjuk annak reciprokat.

Vagyis |_ = y •

c./ A generáló elemnek megfelelő oszlop többi adatát
megkapjuk, ha aa előző táblázat megfelelő adatait
szorozzuk a generáló elem reciprokénak n~l"-ssere-
sével / - y- -val/

d./ A többi adatot as elsmi bázistranszfomáoióval kap-
csolatban tanultak szerint számítjuk ki.

Az előbbi példánk tehát a következő számításokhoz vaaet:

u.

u2

u

2

2

5

3

S 3
i.

3

3

- 1 I 1
u 2 '-2
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x1

*2
U3

^1
X2

X3

ul
5

-2

1

ul
6

-3

1

U2

—2

i

-i

u2

-3

2

-1

x3

-1

1

0
U3
1

-1

1

Tehát

A" 1

 =

Vegyük az

6

-3

1

-3

2

-1

1

-1

1

A x = b

egyenletrendszert és legyen A az előbbi háromszor hármas
mátrix, b pedig a következő:" •

b = fl3, 32, 23JT

Keressük azt az x vektort, amely kielégíti az

egyenletrendszert, vagyis

1 2 1

2 5 3

1 3 3

Tudjuk, hogy
x = A"1 b

és mivel ismerjük, hogy

~ xl
X2

X3

=

13

32

23



- 139 _

6

-3

1

-3

2

i-i

1

-1

1

ás
b = [i.3, 32, 23J

az z vektort a következőképpen kapjuk meg:

azaz

6

-3

1

-3

2

-1

1

-1

1

13

32

23

-3

1

"78

•39

13

13 +

-3

2

-1

-96

64

-32

32 + -1

23

-23

23

23 =

Ellenőrizzük, hogy A x = b azaz

1 2 1

2 5 3

1 3 3

5

2

4

5
10

5

+

4

10

6

+

4

12

12

=

13

32

23_

tehát az egyenletrendszert valóban megoldottuk.

Végűi invertáljuk az előbbi mátrixot úgy, hogy a ge-
neráló elemet más sorrendben választjuk meg, majd az
eredményt rendezzük előbb a sorok, majd az oszlopok
szerint.
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f-t
3

U3

XX

S3
2

X

-2

2

5

3

X3

i-i

3

3

XX
U2

U3

UX

X

-2

-X

*2

2

X

X

X3

X

0
2

XX
X3
U3

UX

3

-2

3

*2

X

1

0

u2

-X

1

-2

XX

X3

UX

6

X

-3

U3

X

X

-1

u2

-3

X

2

Rendazztilc a sorokat feXcsrslsaével:

XX

X3

UX

6

-3

X

U3

X

-X

X

»2

-3

2

X
y
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Most rendezzük az oszlopokat az u, és u, felcserélésé-
vel: c •*

x l
Xg

x 3

u l

6

-3
1

u2

-3
2

1

U3

1

- 1

i-i

Mint látjuk, eredményűi az inverz mátrixot kaptuk
ugyanúgy, mint előbb.

A továbbiakban tekintsük meg numerikus példák alapján
a lineáris egyenletrendszerek megoldását.

4«4. Lineáris inhomogén reguláris egyenletrendszer

megoldása

Ha az

A i » b

Lineáris egyenletrendszerben az A mátrix kvadratikus és
nemszinguláris, akkor az egyenletrendszert megoldani
annyit jelent, mint meghatározni azt az x vektort, amely
az adott egyenletrendszert kielégíti. Mint tudjuk, a meg-
oldás szükséges és elégséges feltétele, hogy a b vektor
benne fektidjek az A mátrix oszlopvektortereben, azaz hogy
a b vektor kifejezEetS legyen az A mátrix oszlopvektorai-
na? lineáris kombinációjaként, vagyis

A b vektornak az a^, > •••» £», bázisvektorokra vonat

kozó koordinátái éppen a keresett ismeretleneket adják.

Legyen feladatunk az

x x + íj + x 3 » 11

28

17

egyenletrendszer megoldása.
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Azt, hogy a b vektor benne fekszik-e az A mátrix osz-
lopvektorterében, a bázis-transzformáció során megismert
eljárással állapítjuk meg, azaz

xl*l

x3e3

s-i

1
2
1

S.2

1
1

3

1
A

1

—

11
28

15

1

-1
2

1
2
0

11
6

->

3

-2
4

—

17
-6
16

b

5
2

4 .

Tehát a b vektor benne fekszik az A oszlopvektor-
terében és ~ ™"

b = 5a, + + 4a,

1
2

1

+2

1

1

3

+4

1

4
1

=

5
10

5

+
2
2
6

+
4
16

4
=

11
28

15

vagyis az egyenletrendszer megoldása

*! - 5, ig = 2, i 3 = 4

A mátrixok faktorizációja alapján - mint tudjuk -
az A mátrixot az

A - A x jir, DJ
formában is felírhatjuk. Most azonban D = 0, vagyis

1 1

2 1

1 3

63
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1
0

0

0
1
0

0
0
1

5
2

4
=
1
2
1

1
1

3

1

4

r-l 
'

5
2

4
s

11
28

15

1 1 1

2 1 4

1 3 1

Mivel nincs olyan vektorunk, amelyet ne vontunk volna
be a bázisba, a faktorizációnak az adott esetben nincs
jelentősége.

Számítsuk most ki az A mátrix inverzét:

ul
u2

U3

IAJ
2

1

X2

1

1

3

X3

1

4

1

xl
u2

U3

ul

1

-2

-1

Tg

1

ED
2

x 3

1

2

0

xl
x 2

x 3

ul

r-i

2

-5

U2

-1

2

U3

3

-2

E

xl

*3

ul

2,

-0,

-1,

75

50

25

u

-0

0

2

»

0

,

5

5

-0

0

0

u3

,75

,50

,25
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Most az A Inverzének ismeretében az egyenletrendszer

x = A" 1 b

alapján is megoldható, azaz

"2,75 -0,5 -O,75~

-0,50 0 0,50

-1,25 0,5 0,25

2,75

0,50
1,25

11 +
- 0 ,

0

0 ,

5

5
28 +

30,25
-5,50

-13,75
+

-14
0

14
+

-11,25
7,50
3,75

=

11

28

15

"0,75"

0,50

0,25
15 =

a megoldás tehát most is.

x 1 = 5, x 2 = 2, = 4

Oldjuk meg most a következő egyenletrendszert, ahol
- mint látni fogjuk - az A kvadratikus mátrix szinguláris.

Végezzük el a számításokat:

2.1 §.? ii ! íl
"•"•.L ™"i£ ™ \ 5 | "**"

11

18

10

= 11
= 18
= 10

a.31 £
I

2 1 ' 11

-3 3 í-12

3

-1

0

Az a, most nem vonható be a bázisba ás
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vagyis az A mátrix oszlopvektor terében az a-, , a„ osz-

lopvektorok bázist alkotnak, viszont az a, vektorral

már lineárisan függő rendszert kapunk. Valóban az a,

vektor lineárisan függ az a^, §_2 vektoroktól, kifejez-

hető azok lineáris kombinációjakánt, azaz

2L3 = 3a-,. -

tehát

1
2
2

-
2
3
1

=

1
3
5

Az adott egyenletrendszerben csak két független egyen-
letünk van - amint majd erre még visszatérünk - három
ismeretlennel, tehát az egyenletek ás az ismeretlenek
száma nem egyezik meg. Ez viszont azt is jelenti, hogy
r/A/ = 2, vagyis a matrix rangja és rendje nem egyezik
meg, tehát az A mátrix szinguláris. Tudjuk viszont, hogy
a szinguláris mátrixoknak nincs inverzük, tehát most az
inverz nem használható az egyenletrendszer megoldására.

A faktorizáció alapján viszont most a következőket
írhatjuk fel:

1

0

0

0

1

0

3

- 1

0

=

vagyis

1 2 1

2 3 3

2 1 5

£ = k. í

1 0 3

0 1 - 1

0 0 0

3

4

0

=

1 2

2 3

2 1

3

4

0

=

11~

13

10
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4.5. Lineáris inhomogén irreguláris egyenletrend-

szerek megoldása

Tekintsük az

= 12

= 17

Lineáris egyenletrendszert ás oldjuk meg.

- 1 - 2 S.3 2.4

[lj 1 1

2 3 4

3 4 5

5 112
I

6 117
I

S-2 S-3 - 4

Íj 2

1 2

« 3 24, ü

-1 -2 ',3
i

3 l 2
i

0 i 0

A ÍJ vektor tehát kompatibilis az a, , a_2 oszlopvektorok

által generált altérre nézve. Ugyanakkor az §_, és a. vek-

torok az a,, ág vektoroktól függenek, ugyanis

(-1)

és

3.4 = (-2)Sa 3a2 = (-2)

1

3

4

=

1

4

5

1

3

4

=

1

5

6

Ez azt is jelenti, hogy csak kát független egyenletünk

van, a harmadik a két első egyenlet következménye.
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Határozzuk meg az A transzponálnának rangját, mert igy
mint látni fogjuk, az~"is kiderül, hogy a két egyenlet milyen
lineáris kombinációjával lehet a harmadikat eloállitani.

1 2 3

1 3 4

1 4 5

1 5 6

határozzuk meg ennek rangját

ki £2 h

tehát

2 3
1 1

2 2

3 3

azaz

1

1

0

0

1

1

1
1

+ 1 .

2

3
4
5

3
4
5
6

1 .

vagyis a harmadik egyenlet az első két egyenlet összege.

Mivel az A mátrix oszlopvektorai közül csak két lineá-
risan függetíen vektor választható, r/_k/ = 2

Paktorizáljuk az együttható mátrixot, azaz

A = A 1 jrI r ,

1
2

3

1

3
4

1
0
0

0
1
0

- 1
2
0

- 2
3
0
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Ismerjük, hogy az

A £. = í_

összefüggés felírható az

-1 \-r' Dl x = Ai á. = £

formában, ami csak akkor áll fenn, ha

Pí
és ahol a d. vektor a b_ rektornak az A^ mátrix által megha-

tározott koordinátáit tartalmazza, példánkban

Bontsuk az x vektort két komponensre, az x r kötött is-

meretlenek vektorára és az x_ szabad ismeretlenek vektoré-

ra, vagyis

és akkor

vagyis

x_ + D
—r —

amiből '

ezzel megkaptuk az egyenletrendszer általános megoldását.

Tudjuk, hogy

s = n - r

az egyenletrendszer szabadságfoka.
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Az x s vektor komponenseit tetszés szerint megválasztva,

partikuláris megoldásokhoz jutunk.

Példánkban

i =

tehát

£r =

3

2

"3"

2

D =

-

-1

2

-1

2

~2~

3

-2 ~

3

Legyen az x^ vektorunk egy zérusvektor, tehát

amikoris °- °r
és

x = 3, 2, 0,

Ha viszont

- b í
akkor

-r =
3

2

vagyis

x = [ő,

-1

2

-3, 1

Ellenőrizzük, hogy

-2

3

az

1

1

3

2

-3

5

6

••3

A x =
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most is teljesül, azaz

6

-3

1

1 1 1 1
2 3 4 5
3 4 5 6

6
12
18

-
3
9

12
+

1
4
5

+
1
5
6

5
12
17

Alakítsuk át az előbbi egyenletrendszerünket úgy, hogy
a harmadik egyenlet jobb oldalára 17 helyett írjunk 15-öt,
és próbáljuk megoldani.

SQ.

(3
2
3

*2

1
3
4

-3
1
4
5

-4
l
5
6

I
i D

; s
i 1 2

; is

2-2
1

0
1

-3

i-i

O
J

2

2.4 !

3
3

b

5
2
0

-3
- 1

2
0

-4
-2

3
0

b

1
2

-2

A feladatot nem tudjuk megoldani, a b vektor nincs
benne az A mátrix oszlopvektorterében, Hiszen

b = a^ + 2 a 2 - 2 e.

Mivel két lineárisan független oszlopvektort tudunk ki-
választani, tehát v/_k/ = 2, arra gondolunk, hogy valamelyik
egyenlet a másik kettő következménye. Az A mátrix transz-
ponáltjának rangját már az előbb meghatároztuk, s ebből ki-
derült, hogy a harmadik egyenlet az első két egyenlet össze-
ge. Ellenőrizhetjük, hogy ez az egyenletrendszer bal olda-
lára vonatkozóan igaz, azonban a jobb oldalra nem áll fenn,
hiszen 5 + 12 = 17, de egyenletrendszerünkben itt csak 15
található. Most tehát a harmadik egyenlet nem következménye
az első kettőnek, illetve csak a bal oldal következmény,
a jobb oldal viszont nem, tehát az egyenletrendszer ellent-
mondásos és nincs megoldása. IJem biztos tehát, hogy egy
egyenletrendszernek van megoldása,-ha az ismeretlenek szá-
ma nagyobb, mint az egyenletek száma. A megoldhatóság fel-
tétele, hogy az A. mátrix rangja megegyezzen az A. b rang-
jával, vagyis

r /A/ = r /A, b/

Legyen adva egy olyan lineáris egyenletrendszer, amely-
ben az egyenletek száma több, mint az ismeretlenek száma
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/m>n/. Vegyük például az

x, + 2x

4x,

= 7

3x = 12

5x2 = 19

7*2 26

egyenletrendszert és vizsgáljuk meg, megoldható-e?

i

3 , 12
5 | 19
7 ! 26

2
- 1
- 1
- 1

b

7
-2
-2

b

3
2
0
0

A megoldás = 3 , x 2

= 3

2, vagyis

+ 2 a 2

tehát a b vektor kompatibilis az A oszlopvektortersre

nézve, ás

r /jj = 2

A harmadik ás a negyedik egyenlet tehát az első

kát egyenlet következménye, s kifejezhető azok lineáris

kombinációjakánt.

Állapítsuk meg az A transzponáltjának rangját

- 1

0
2

- 2

2
3

3
5

-4

4
7

-2 -3

2 3
F3 -1

-4

4
-1

-3

1
1

£4
2
1

—J bn
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vagyis a harmadik egyenletet megkapjuk, ha az első és
második egyenletet összeadjuk, a negyedik egyenletet
pedig akkor kapjuk meg, ha a második egyenlethez hozzá-
adjuk az első egyenlet kétszeresét.

Legyen most adva a következő egyenletrendszer -

x^ + 2x2 + 7x 3 = 6

2x2

4x2 +17x3

+24x.

8

14
20

Vizsgáljuk a b vektor kompatibilitását.

S-l

0
2

3
4

Se

2
2
4

•6

-3

7
10
17
24

1 k
1

: 6
1 8

! 14
1 20

2

El
-2
- 2

S3

7
—4
-4
-4

b

6
-4
-4
-4

3
2
0
0

b

2
2
0
0

Az egyenletrendszer megoldása

x 1 » 2 , x 2 « 2 , x 3 = 0

Az eddig tanultak alapján könnyen rájövünk, hogy

az a. vektor lineárisan fUgg az a^, ag vektoroktól a

3 «! + 2 jg

formában. Láttuk azt is, hogy a harmadik és negyedik
egyenlet következménye az első és a második egyenletnek.

Az egyenletrendszer többi megoldását az

alapján állíthatjuk elő.
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4.6. Lineáris homogén reguláris egyenletrendszerek
megoldása

Az előbbiekben inhomogén egyenletrendszerekkel foglal-
koztunk. A továbbiakban vizsgáljuk a homogén egyenletrend-
szereket, amikoris mint tudjuk b = 0, vagyis

A x = 0

A homogén egyenletrendszernek mindig van megoldása,
mivel b = 0 és a zérusvektor minden altérnek eleme, tehát
a 0 velctor kompatibilis az A oszlopvektorterére nézve.
Az~A x = 0 komogén egyenletrendszert az x = 0 vektor fel-
tétlen kielégíti, hiszen A 0 = 0. Az x = 0 megoldást
triviális megoldásnak nevé"z55Ük.~ ~ ""

Ha A. kvadratikus mátrix és nem-szinguláris /tehát

rendje és rangja megegyezik/, akkor az

A x = 0

megoldásaként kapjuk, hogy

x = A" 1 0 = 0

vagyis triviális megoldáshoz jutunk. Ilyen esetben nincs
is más megoldás.

Oldjuk aeg az

x 1 + 2x 2 + 3x 3 = 0

2X-L + 2xr, + 5x, = 0

egyenletrendszert.

A tanultak alapján ellenőrizhetjük, hogy a r/A/ = 3
vagyis az A mátrix nem-szinguláris, rangja ás rendje
megegyezikT

Határozzuk meg az A inverzét. Kapjuk, hogy

4,6 1,4 0,8

A-1 0,6 - 0,4 0,2

0,8 - 0,2 - 0,4
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A megoldás tehát

I = A"1 0

4,6

0,6

0,8

1,4

-0,4

-0,2

0,8

0,2

-0,4

0

0

0

=

0

0

0

vagyis a megoldás csakis

x = 0

lehet.

Legyen most egy olyan példánk, amikor az A mátrix
szinguláris, azaz rangja kisebb, mint rendjeT /Mint
tudjuk, az ilyen mátrixnak ninos inverze./

2x,

3x1 +

4x,

8x,

= 0

= 0

= 0

A tiriviális megoldás természetesen most is létezik,
de mint látni fogjuk, látezik más megoldás is.

Határozzuk meg most a mátrix rangját.

S-l

OD
2

3

a2

2

5
1

-3

4
1

8

S.2

1

H3
- 2

-3

2

-3
2

-3

3
- 1

0

Tehát

T/A/ = 2

vagyis a mátrix szinguláris és

Az egyenletrendszer általános megoldása mint tudjuk
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ahol a d a b vektornak az A, mátrix által meghatározott

koordinátáit tartalmazza. Mivel azonban b = £, igy

d = £, elegendő tehát a D-t megállapítani.

Példánkban

D =

tehát

azaz példánkban

Most ha x, = 1, akkor

a-i
vagyis az egyenletrendszer megoldása

= -3, = 1, X3 = 1

valóban

-3

Ha Xo =

2

2

3

+

r 2

5

1

+

4

1

8

= 0

0

2,
-3

1
2 =

~-6~

2

vagyis x, = -6,

azaz

2, x 3 = 2

2

2

3

+2

2

5

1

+2

4

1

8

0

0

0
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Az x, értékét tehát tetszés szerint felvehetjük, s

ettől függően az egyenletrendszernek végtelen sok megoldá-

sa van.

4.7. Lineáris homogén irreaulális egyenletrendsze-

rek megoldása

Ha az

A x = b

egyenletrendszer homogén /b = 0/ ás irreguláris, vagyis
az egyenletek száma /m/ és az ismeretlenek száma /n/ nem
egyezik meg, tehát m < n vagy m s a , az egyenletrendszer-
nek mindig van a triviális megoldáson kívül más megoldá-
sa is.

Tudjuk, hogy homogén egyenletrendszerben

d = 0

így

Legyen feladatunk az

1 xl + 2 x2 + X3

2 x l + 2 x2 + 3x3

egyenletrendszer megoldása, ahol

Határozzuk meg D-t

2-1

CD
2
1

S-2
2
2

3

a 3

1

3
2

a-4
3
1

2,5

a 2

2

EH
i

2-3
1
1
1

-4
3

-5
-0,5

- 0

[I

a-
2

,5
I5]

5

2

-3

-4
-2
,5
,0

a 4

2

1,5
-2

A megoldás tehát
2

1,5

-2
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Ha például = 3

. 3 =

-6

-4,5

6

vagyis

= -6, = -4,5, *3 =

ellenőrizzük

1

2

1

-4,5

2

2

3

+ 6

1

3

2

+ 3

3

1

2,S

=

0

0

0

Legyen most feladatunk az

egyenletrendszer megoldása, ahol

Határozzuk meg a D-t.

1% n.

- 1

0
2

5
4

a 2

2
1

4
5

—3
1
3
7
5

§.2

2

-6

-3

—3
1
1
2
1

-3
5/3

-1/3
0
0

- 1
3"
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es ha x.

2* =

= 2

Y
- i
T

2 = ~ 3

2
3"

vagyis x, = - 10

Ellenőrizzük:

10

1
2
5
4

+ 2

2
1
4
5

+ 2

1

3
7
5

- 1 0

-a
3

"f"
2
5"

8

3"

10

~6
J

18

=

0

0
0
0
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5. FEJEZET

Lineáris egyenlőtlenségrendszerek megoldása

A gazdasági számítások során, mint látni fogjuk,
igen nagy szerepük van az egyenlőtlenságrendszereknek.
A lineáris egyenlőtlenségrendszerek általános alakja

all xl + a12 *2 + *

a21 xl + a22 *2 + *

• •

• •
* •
ml 1 md d

amit Összevontan az

A x C b

formában irunfc fel.

•• + aln 3

.. + a 2 n :

•

•
•

'• + amn 3

c ^

bl

b2

•

•
«
bm

Gyakran vizsgáljuk valamely kiválasztott egyenlőt-
lenséget. Vegyük például a rendszer i-edik egyenlőt-
lenságét, azaz

ai2 *2 + ••• + aij xj + •'• + ain *n=
amit összevontan

formában is jelölhetünk.

Előfordul, hogy a rendszerben nem csak s irányú,
hanem 4 irányú relációk is találhatók. Tegyük fel, hogy
az i-edik egyenlőtlenség*irányú, vagyis

j aij xi l bi
Ez viszont könnyen = alakra hozható, csupán - 1-gyel

kell beszoroznunk, vagyis a

egyenlőtlenság ekvivalens a

egyenlőtlenséggel.
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Lehetséges az is, hogy a rendszerben egyenlet is
szerepel. Tegyük fel, hogy

Minden egyenlet helyettesíthető azonban vele egyen-
értékű kát egyenlőtlenséggel, vagyis

?a.. x. h .

esetén

j aij xj ~ i

Az elmondottakból belátható, hogy mind az egyenletek,
mind az=irányú egyenlőtlenségek a

normál alakra hozhatók.

A gazdasági számítások során csak a nemnegatív megoldá-
sokat keressük, azaz amikor z £ £ es általában a fela-
datokban b - 0_, ezért mi az un. normál egyenlőtlenség-
rend szere IckelT vagy röviden normaÍrendszerékkel fogunk
foglalkozni, a'-az

Ax£íi> £ - Q» b - 0
Aérelációju egyenlőtlenségek esetén általában nem

-l-*gyel való szorzást, hanem más eljárást fogunk követni.

Nemcsak egyenlet alakítható át egyenlőtlenséggé /ami-
kor az egyenletet két azonos értékű, ellentétes irányú
egyenlőtlenséggel helyettesitjük,/ hanem az egyenlőtlen-
ségek is átalakíthatok egyenletekké.

Az £ i b "
j íj j i

egyenlőtlenséggel egyenértékű a

T a.. x. + u. = b-
. • 0 . 1 3 3 í í • •

egyenlet, ahol u.-t hiányváltozónak nevezzük és azt mu-
tatja, hogy a bal oldal mennyivel kevesebb, mint a jobb
oldal. /Mennyi hiányzik a bal oldalról, hogy az egyenlő
legyen a jobb oldallal./ Ennek alapján az

A x = b
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helyett az

A x + u = b u = 0

feladatot oldhatjuk meg, ahol u rektor a b - A x
különbséget jelenti. ~ ~

Hasonlóképpen a

f aij xi = bi
egyenlőtlenséggel egyenértékű a

ij xi - vi " bi
egyenlet, ahol v^-t többiétváltozpnak nevezzük és mu-
tatja, hogy a bal oldal mennyivel nagyobb, mint a jobb
oldal /mennyi a többletünk/. Ennek alapján az

á £ - b

helyett az

feladatot oldhatjuk meg.

vAnnak jelölésére, hogy a feladatban mind a =, mind
a = irányú egyenlőtlenség, s5t az egyenlet /=/ is
előfordul, alkalmazzuk az

A x ^ b

formát, amely egyenértékű az

A x + U - T = b

feladattal, ahol az u és T rektorok az A x - b különb-
ségét jelentik. - - -

Az egyenlőtleaségrendazert kielégítő x rektorok hal-
mazát a lehetaéKga megoldások halmazának~nerezzUk és
L-lel jelöljük. Ha az I halmaz nem üres, akkor aa egyen-
lőtlenségrendszert konzisztensnek, ellenkező esetben
inkonzisztensnek nevezzük. "

Legyen adra az /
x l + 2»2 » 1 0

2 x 1 + 3x3 i 17
4a^ + 3i2 * 30

egyenlőtlenségrendfizer, s feladat ennek Megoldása.
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"2

U~

= 10

» 17

= 30
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A hiányváltozók bevezetésével a feladat felírható az

3X2

formában.

Ha a lehetséges megoldások halmazából az x = k), 0]

vektort Tesszük, akkor u 1 = 10, Ug » 17, u, = 30.

Ha az x = fi, íj T vektort választjuk, akkor u, « 7,

Uj = 12, u, = 23, az x »Í2, íl esetében u x = 6,

Ug • 10, u, = 19, stb.

Az x vektort a megoldás primal részének, vagy grimális.

megoldásnak, az u vektort a megoldás duális részének, vagy

duális megoldásnak nevezzük.

Foglaljuk a feladatot táblázatba, kiemelve a változókat

a fejrovatba.

xl

1
2

4

*2

2

3
3

ul

1
0
0

U2

0
1
0

U3

0
0

l-l

b

10

17
30

Látjuk, hogy az x rektorhoz az A egyatthatómátrlx,

az u rektorhoz pedig az E egységmátrix tartozik. A feladat

megoldását az ismert módszerekkel kapjuk.

' xl

0
2

4

2

3
3

ul

1
0
0

"2

0

i-i

0

U3

0
0

l-l

b

10

17
30
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xl

xl

xl

U3

X2 u x

2 1

ED -2
-5 -4

ul

3
-2

-14

U2

0
1
0

u 2

-2
1

5

ul

'3
-2

-14

U3

0
0
1

U3

0
0

0
u 2

-2
1

5

b

10

-3
-10

b

4
3
5

b

4
3
5

Tehát

4, 3, 0, u 2
0, = 5.

A számítás mint tudjuk, az B elhagyásával egyszerű-

sítve is elvégezhető, azaz

• k

10

1 1 7

30

x 2

2

0

b

10

-3
-10

b

4
3
5

A megoldás moat is

4, 3, = 0, u 2
0, = 5.
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Az első/induló/

u l
U 2
U 3

x l

1
2

4

*2

2

3
3

b

10

17
30

táblázat is egyféle megoldást mutat, mégpedig az x-,= 0,
x2= 0, u 1 = 10, u2= 17, iu= 30 megoldást. Ez a triviális
bázismegoldás. Az u komponenseit bázisváltozóknak is szok-
tuk nevezni, mig az x komponensei a szabad változók.
Az

A x + u = b

triviális megoldása
x = £, u = b

Mint mondottuk, a gazdasági számítások során köve-
telményünk az is, hogy az egyenletrendszer nemnegatfv
megoldásait állítsuk elő. Ezt a követelményt teljesít-
jük, ha az utolsó táblázatban a b vektor koordinátái
nemnegatívak. Célszerű arra törekedni, hogy a számítá-
sok során a b vektor koordinátái között egyik táblázat-
ban se szerepeljen negatív érték. Ezt elérhetjük akkor,
ha a generáló elemet ugy választjuk meg minden lépésben,
hogy a

b, b 2

T ± -é- , Stb.

hányadasok közül a legkisebbnél választunk generáló ele-
met.

Vegytik az alábbi feladatot

Xj + 2ij + 4x^
2x1 + 3xg + 5x̂

é 18
é 25
i 12
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Oldjuk meg az egyenlőtlenaágrendszert.

18 : 1 = 18

25 : 2 = 12,5

12 : 1 = 12

Ha tehát az első oszlopból választunk generáló elemet,
célszerű annak harmadik elemát választani, mert ekkor
kaptuk a legkisebb hányadost. Elvégezve ennek alapjain a
transzformációt, a következő táblázatot kapjuk:

ul

U3

xl

1
2

HI

*2

2

3
1

X3

4
5
3

b

13
25
12

ul
u 2

xl

U3

-1
-2
1

*2

1

[31

x3

1
-1

3

b

1
1
L2

Válasszuk most a második oszlopból*generáló elemet.
A következő táblázatunk

ul

xl

U3

-3
-2

3

u2

-1
1
-1

0

-1

4

b

0
1
Ll

A megoldás x, = 11, X3 =

0, U,

ul
u 2

•

xl

all
a21

•

aml

Xg ..

a12 •'

a22 **

•

am2 **

^n

• am
• a2n

bi

bm
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táblázatot ragy mátrix alakban felírva az

táblázatot szimplex táblázatnak nevezzük.
Megjegyezzük, hogy ha A kvadratikus és nemszinguláris,

akkor az x rektor az ismert bázistranszformáciő által
kicserélhető az u báziarektorral. Ha A nem kvadratikus
és rangja r, akkor átrendezéssel elérhető, hogy A^ as
első r sorban és r oszlopban helyezkedjen el, s ezzel az
Xg, kicserélhető az u r Táltozókkal.

A lineáris programozási feladatok megoldása során mi
a szimplex módszert fogjuk alkalmazni. Kiindulunk a

szimplex táblázatból és vigyázva, hogy a b rektornak
osak nemnegatiT koordinátái legyenek, bázistranszformáoió-
kat hajtunk régre. Az eljárást grafikusan is szemléltethet-
jük kétváltozós feladatok esetén.

Oldjuk meg az

3X2
2 x 2

egyenlőtlenségrendszert.

i 5
i 12
* 9

u l
U 2
U3

x l

02

•-I

*2

1

3
2

b

5
12

9
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x l
u 2

U 3

u l
1

- 2
- 1

*2
1

01
5
2
4

x l

U 3

u l

3
"•2

i

u 2

- 1
1

- 1

3
2
2

u t j i n
14. ábra

A megoldások L halmaza

A megoldások L halmazát az OASC pontokat összekötő
vonalak által határolt négyszög pontjai alkotják. A
OABC négyszög egy konveat poliéder. Az L halmazt
konvex halmaznak nevezzük, ha e halmaz bármely két pont-
jával együtt az azokat a pontokat összekötő szakaszt ia
tartalmazza /14-15• ábra/.
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15. ábra

Konvex halmaz

A poliéder sokszögű testet je-
lent. Konvex^polisder a négyszög,
a kocka, a háromszög, de egy sza-
kasz is. A konvex poliéderek zárt
és konvex halmazok. A korlátos
konvex poliédereket konvex politó-
poknak nevezzük. így a konvex po-
litóp az előbbi ábránkban az OABC
négyszög is.

A lehetséges megoldások L hal-
mazát azok az x vektorok adják,
amelyek az adoTt egyenlőtlenság-
rendszert kielégítik, azaz xtL.
Az I extremális pontjának nevezzük
azt az x £ L vektort, amely nem^el-
ső pontja egyetlen olyan

szakasznak sem, amely benne van az L halmazban. A OABC négy-
szög 0, A, B, Ö pontjai tehát extremális pontok /csúcspontok/.
Olvassuk le ábránkon az extremális pontokhoz tartozó koordi-
nátákat.

A 0 ponthoz a triviális megoldás tartozik, vagyis

x = 0 ás ekkor u = b

Az A ponthoz tartozó koordináták

f "IT r
x =15, 0 , ekkor u = 0, 2,

A B ponthoz tartozó koordináták

x = 3, 2 , ekkor u = 0,

A C ponthoz tartozó koordináták

x = 10, 4 , ekkor u = 1* 0, 1

" L J ~ L J
Az olyan konvex politópot, amelynek eggyel több csúcsa

/extremális pontja/ van, mint amennyi dimenziója, szimplex-
nek nevezzük. A konvex poliéderek között a legegyszerűbb
alakzat a szimplex. E szerint tehát az n dimenziós szimplex
olyan konvex poliéder, amelynek n + 1 extremália pontja

0, 22j

van.

Nulldimenziós szimplex a pont.
Egydimenziós szimplex a szakasz.
Kétdimenziós szimplexek a háromszögek.
Háromdimenziós szimplex a tetraéder.
A háromnál több dimenziós szimplexeknek nincs már
kU13n nevük.
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6. FEJEZET

Lineáris programozás

A lineáris algebra, a lineáris tér, Valamint a lineáris
egyenletrendszerek és egyenlőtlenségrendszerek megoldásának
ismerete után rendelkezünk azokkal a matematikai alapokkal,
amelyek lehetővé teszik a lineáris programozás elsajátítását.
Mint látni fogjuk, ennek során lineáris egyenletekből és egyen-
lőtlenségekből álló feladatokat kell megoldanunk. A megoldást
szimplex módszerrel fogjuk elvégezni, amit lényegében az elő-
ző fejezetből már ismerünk, sőt azt már kétváltozós feladatok-
ra geometriailag is értelmeztük. Egyszerű megállapítani azt
is, hogy a tananyag elején tárgyalt grafikus lineáris progra-
mozás is a szimplex módszer felhasználásával történt, amikor-
is kétváltozós feladat grafikus ábrája alapján a sokszög azon
extremális pontját /csúcspontját/ kerestük, amelyhez egy függ-
vény /a célfüggvény/ extrém értéke /maximuma vagy minimuma/
tartozik.

Ebben a fejezetben már olyan feladatok megoldásával is
megismerkedünk, amikor az ismeretlenek és az egyenletek és
egyenlőtlenségek száma elvileg korlátlan lehet, gyakorlatilag
pedig csak a rendelkezésre álló számítókapacitástól függ.

A lineáris programozás - mint látni fogjuk - jól alkalmaz-
ható gazdasági feladatok megoldására. Ez is indokolja, hogy
már most a lineáris programozás általános tárgyalását gya-
korlati, gazdasági példákkal illusztráljuk, még ha egye-
lőre kénytelenek vagyunk is azokat lényegesen leegyszerűsí-
teni. A gazdasági, gyakorlati feladatok ugyanis legtöbbször
igen nagyméretű modellhez vezetnek. Jelenleg célunk a line-
éirs programozás általános módszertani megismerése és meg-
értése, amely kisebb modellek alapján könnyebben megvalósít-
ható. Később a gyakorlati alkalmazás módszerének tárgyalása
során viszont lehetőségünk lesz arra, hogy a gyakorlati gaz-
dasági feladatokat teljes bonyolultságukban megismerjük.

6.1. A normálfeladat és megoldása degeneráció nélkül

Tegyük fel,, hogy egy vállalat árúnövénytermelési tervét
kell elkészíteni.

Vegyük az egyszerűség kedvéért a 2. fejezet 2.3. pontjá-
ból már ismert példát, mert igy nem szükséges a feladatot
újra részletezni. Csupán emlékeztetőül megjegyezzük, hogy
a vállalat számára rendelkezésre áll looo ha termőterület,
26oo munkanap az első csúcsidőszakban, 68oo munkanap a má-
sodik csúcsidőszakban, a technológiai és a jövedelemadatok
pedig a következők:
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Technológiai és .jövedelemadatok

Megnevezés

Teriiletszilkséglet, ha

Munkanapszilkséglet
az I. csúcsidőszakban

Munkanapszükséglet
a II. csúcsidőszakban

Jövedelem Ft

A B C D
Technológiai és jövedelemadatok 1

ha-ra

1

1

4

900

1

4

2

900

1

4

6

1000

1

2

10 .

1100

/A. B, 0, D - mint tudjuk - a termelhető növények felsorolá-
sa/

A termelési tervet /programot/ ugy kell összeállítani,
hogy a terület ás a munkaerőszükséglet nem haladhatja meg a
rendelkezésre álló kapacitást és az elérhető jövedelem a
lehető legnagyobb, maximális legyen. /A kapacitás teljes
kihasználásához a vállalat nem ragaszkodik, ha az nem
lenne jövedelmező./ Természetesen negatív termelés nem
folytatható.

A feladat a következő lineáris programozási modellhez
vezet:

^1' "^2' ^3 9 ^4 =

xn + x„ + x o + x, i 1000

= 2600 ~

£ 6800

Ö.'l.l.

4*1 +6x.

z = 9O0x1+900x2+1000x3+110Ox. max

Foglaljak a feladatot táblázatba, kiemelve az ismeretle-
neket a táblázat fejrovatába.

*1
1
1 •

4

900

*2
1

4
2 .

900

x3

1

4
6

1000

x4

1
2
10

1100

1000
2600
6800

0
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A táblázatban szereplő technológiai adatok /fajlagos
kapacitásigények/ mátrixa a technológiai mátrix /JJ. A jobb
oldali oszlopban a kapacitásadatokat találjuk, ez tehát a
kapacitás vektor, amit jelöljünk b vektorral. Az alsó sorban
a jövedelemadatokat találjuk, ameTyek azt mutatják, hogy a
különböző termékek milyen hatékonyan járulnak hozzá a válla-
lati jövedelemhez. Nevezzük ezt hatékonysági vektornak és
jelöljük p_-vel. Végül az x-,, Xp, x,, x. a termelési progra-
mot /termelési tervet/ fogja a&ni, igy^az esekből képezett
x vektort programvektornak fogjuk nevezni.

Ennek alapján a feladatot a következőképpen is felírhat-
jul:

A i < i, x £ 0, b > 0,

6.1.2. m
p_ x = max.

E szerint kereaaük azt a nemnegatív i vektort, amelyhez

a p_ x célfüggvény maximuma tartozik ás amely kielégíti az

A x £ b feltételeket.

Az A x ( b feltételeket kielégítő vektorok az L értel-
mezási~"tartömanyát határozzák meg. Az L elemeit lehetséges
megoldásoknak, vagy lehetséges programoknak nevezzük.
Az olyan

*o£ L

lehetséges programot, amelyhez a p_ x célfüggvény maximuma
tartozik, optimális megoldásnak vagy optimális programnak
nevezzük. Ugyanezt jelenti az irodalomban gyakran található

6.1.3. max.{p_Tx | x l 0, A x ^ b, b £ 0}

felirásmód is.

Másrészt a mátrix, illetve vektorok általános elemeit
kiragadva, a feladat az

a* i \ * i ° \ > °
6.1.4. I p-]_x. = max. / j = 1,2,...,n/

/ i = 1,2,...,m/

formában is felírható.
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Végül írjuk fel szimbolikusan az előbb megszerkesztett
táblázatot

T

Ez a szimplex módszer alkalmazása során megszerkesztett
első, úgynevezett induló táblázat, ahol u-val azt is jelöl-
tük, hogy a triviális bázisból indulunk k"i a megoldás so-
rán.

Mielőtt a számszerli páldafeladatot megoldanánk, foglal-
juk össze a normálfeladat jellemzőit.

A lineáris programozási feladatot normálfeladatnak ne-
vezzük akkor, ha a

a/ célfüggvény maximumát keressük /maximumfeladat/
b/ feltételek között kizárólag kisebb egyenlő /£/

relációk találhatók.

A megoldáshoz szükséges számítások az előző fejezetekből
lányegében már ismertek, ezért azt csak röviden, lépésenként
összefoglaljuk, majd a páldafeladat megoldását táblázatosán
közöljük.

A megoldás lépései:

1. lépés: Induló táblázatot szerkesztünk. /Tudjuk, hogy
a triviális bázisból indulunk ki, majd ezt
rendre kicseréljük /ameddig lehetséges/ az
A mátrix oszlopvektoraival./

2. lépés: Meghatározzuk, hogy melyik oszlopból válasz-
tunk generáló elemet. Mivel a célfüggvény
maximumát keressük, célszerű abból az oszlop-
ból választani generáló elemet, amelyhez a
legnagyobb célfüggvényértsk tartozik, mert
így azt reméljük, hogy kevesebb számítással
jutunk el a feladat megoldásához. /Megjegyez-
zük, hogy ez általában igaz is, de nem min-
dig./

3. lépés: Generáló elemet választunk. Mint tudjuk, gene-
ráló elem csak O-tól különböző szám lehet. Mi-
vel a feladatnak csak nemnegatív megoldását
keressük /negativ termelést nem folytatunk/,
fontos, hogy a b vektor koordinátái /legalábbis
a megoldást adó~utolsó táblázatban/ nemnegatí-
vak legyenek. Célszerű ezért generáló elemnek
azt a pozitív elemet választani, amelynél a
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b_ vektor elemeivel alkotott hányados a
Tegkisebb. A generáló elemet tehát ugy vá-
lasztjuk ki, hogy a b vektorhoz tartozó
adatokat oszt.iuk a generáló oszlop adatai-
val és azt az osztót választjuk generáló
elemnek, amelyhez a legkisebb hányadosTar-
tozik. azt bekeretezzük.

Új táblázatot szerkesztünk, amelyben a gene-
ráló elemhez tartozó sor- ás oszlopszimbólu-
mokat felcseréljük.

Az új táblázatba a generáló elem helyére
beírjuk annak reciprokat,/^

Az új táblázatba a generáló elem oszlopá-
nak adatait megkapjuk, ha az előző táblázat
megfelelő adatait szorozzuk a generáló elem
reciprokénak -1-szeresável.

Az új táblázatban a generáló etem sorának
adatait / u i / megkapjuk, ha az előző táblázat
megfelelő adatait szorozzuk a generáló elem
reciprokéval /vagy osztjuk a generáló elem-
mel/.

Az új táblázat többi adatait megkapjuk, ha
a régi táblázat megfelelő adataiból levon-
juk a régi táblázat generáló elem oszlopában
a megfelelő sorban levő adat, valamint az új
táblázatban, az adatnak megfelelő oszlopban
található u^ szorzatát.

A számításokat táblázatról - táblázatra haladva mindad-
dig folytatjuk, amíg a célfüggvény sorában /utolsó sor/ pozi-
tív elemet találunk. Ha ilyen nincs, optimális megoldáshoz
-jutottunk, tehát az utolsó táblázat a feladat megoldását ad-
ja. A számításokat szimbolikusan az alábbi táblázatokban
mutatjuk be:

5.

6.

7.

lépés

lépésti

lápés:

lépés:

8. lépés;

ul
u 2

\

ul

um

xl " •

all ••'

a21 '••

ail ••'

aml •'•

a2,i
•

aij

•

n

... a l n

... a 2 n

•

... a i n

, . „ a
mn

b 2

*

D -

->
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P3>pl'

r-£
ÍÍ - = ai2

^ 3

, ...,<f = b,
n 1

/Az induló táblázatban természetesen 2 = 0 /

ul

"2

*3

•

xl

a n " ̂1°:
a2i " ̂ I8:

•

Si - ^l4!

Pl ~ ̂ .P,

• • • **4

-O ^»

-#

... r

•
»3 ̂ V

) -TP3

• •• xn

alm ~ na13

a,„ - o*la,̂
dm n 23

•

pn ~ ^np3

b l " ^ 1 3

>2 " ^ 2 3

1 ^o

•
• —>

z " ̂ őp3

Lássuk most példafeladatunfc megoldását és a megoldás során
kapott táblázatokat.

ul
«2
U3
-a

*1
1
1
4

900

*2
1
4
2

900

1

4
6

1000

X4
1
2

lőj
1100

1000

2600

6800

0
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ul
«2
X4
-z

*1

0,6
0,2
0,4

460

*2

0,8

0,2

680

X3

0,4
2,8
0,6

340

U3

-0,1
-0,2
0,1

-110

320
1240
680

-748000

ul
*2
X 4

-z

xl

0,06

0,39

422,2

«2
-0,22
0,28
-0,06

-188,9

X3
-0,22
0,78
0,44

-190,4

Y
-0,05
-0,06
0,11

-69,2

44
344
611

,45
,44

,11

-982219,2

xl

X4

-z

ul
1,82
-0,11
-0,71

-767,6

«2

-0,4
0,3
0,1

-20,0

X3
-0,4
0,8
0,6

-21,52

U3
-0,09
-0,05
0,15

-32,1

80
339
579

,82
,59
,59

-1016340

A kapott optimális megoldás tehát a következő:

80,82,

0, U2

339,59,

0,

X3
U3

o,
o,

579,59

1 016 340

vagy másképpen_felírva

E " 0, z = 1 016 340
80,82
339,59

0
579,591

Megjegyezzük, "Bogy a táblázatban a z negatív előjellel
szerepel. Ez kizárólag számítástechnikai okokból van igy,
hogy a célfüggvényértek kiszámítására ne legyen szükség
külön eljárásra. Valójában ezt -1-gyel beszorozva, pozitív-
nak vesszük.
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Az utolsó táblázatból leolvasható, milyen termelési
program adja a legnagyobb jövedelmet. Az 1.7. pontban, vizs-
gáltuk a megoldást és az eredményt gazdasági szempontból
is. Tudjuk, hogy a harmadik termék, bár önmagában szemlél-
ve jól jövedelmező, az utolsó táblázat mutatja, hogy a har-
madik termék 1 ha-on való termelése 21,52 ft jövedelem-
csökkenést okozna. Mindhárom termelési erőforrást teljes
mértékben felhasználtok. Az utolsó táblázat utolsó sorából
az is meg»llapitható, hogy amennyiben valamelyik erőforrás-
ból kevesebb állna rendelkezésre egy egységgel, akkor az
első erőforrást tekintve, 767,6 Ft-tal a második erőforrás-
nál 20 Pt-tal, a harmadik erőforrásnál 32,1 Ft-tal csökken-
ne a jövedelem. Az erőforrások egy egységgel való növelése
viszont ugyanannyi jövedelememelkedéshez vezetne. Ennek
alapján a vállalatvezetés dönthet arról is, hogy melyik
erőforrásból volna célszerű a kapacitást növelni, vagy
csökkenteni. Ha ugyanis valamely erőforrás olcsóbban sze-
rezhető be, mint az egységnyi erőforrás által elérhető
jövedelemtöbblet, akkor érdemes ebből a kapacitást növel-
ni. Ellenkező esetben a kapacitás csökkentése célszerű.

Vegyük például az első erőforrást. Ebből célszerű bő-
viteni a kapacitást, ha beszerzése kevesebbe kerül /egysé-
genként/ 767,6 Ft-nál. Ha például a piacon az első erőfor-
rást egységenként 600 Ft-ért lehet beszerezni, célszerű
ezt megtenni, mert a 767,6 Ft jövedelem nemcsak fedezi
a költséget, de még 167,6 Ft jövedelmet is eredményez. A
vállalatnak tehát az adott esetben az első erőforrás egy
egysége 767,6 Ft-ot ér /hiszen ennyivel emeli a jövedelmet/,
bárhogyan is alakul az adott erőforrás íjiaci ára. A modell-
ben tehát az erőforrások mintegy felértékelődnek, s ez
mutatja, hogy az adott körülmények között - függetlenül a
beszerzési ártól, illetve költségektől - mennyit érnek
a vállalat számára. A duális változókhoz tartozó célfügg-
vényértéket /a duális megoldást/ árnyékárnak nevezzük. Az
árnyékárakkal a későbbiek során még gyakran találkozunk.

Végül ellenőrizzük a megoldást azzal, hogy a kapott
eredményt 'beiislyettesitjük a 10.1.1. vagy a 10.1.2.-be,
azaz:

80,82 + 339,59 + 0 + 579,59 = 1000
80,82 + 4 . 339,59 + 4 . 0 + 2 . 579,59 = 259,36 = 2600

4 . .80,8° + 2 . 339,59 + 6 . 0 + 10 . 579,59=6798,36 = 6800

900 . 80,82 + 900 . 339,59 + 1000 . 0 + 1100 . 579,59 =
= 1 015 918 = 1 016 340

vagy
1

1
4

1

4
2

1

4
6

-
1

2
10
—

80

339

579

,82

,59

0

,59

—

r- - j

1000

2600

6800
1— 1
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900, 900, 1000, liool

80,

339,
0

579,

82

59

59

1015 918 ̂  1 016 340

A lényegtelen eltérés kerekítésekből adódik. Az adott
példa alkalmas volna arra, hogy segítségével különböző prob-
lémákat bemutassunk és összefüggésbe hozzuk a gazdasági hát-
térrel is. A kerekítésekből adódó hibák azonban mindvégig
zavarnának bennünket. E hibák azonban csökkenthetők, ha a
számadatokat némileg átalakítjuk. Mindössze négy adatot kell
megváltoztatnunk és máris nagyobb pontossággal tudunk számol-
ni. Alakítsuk tehát át a íeladatot ugy, hogy induló táblá-
zatunk a következő legyen:

ul
U2

-z

xl

1
1,8

4

900

x2

1

4,4
2

900

x ?

1

4
5

950

x 4

1
2
10

1100

1000

2600

6800

0

Ha most az

200

100

300

400

logikai utón előálllTbofímeg, akkor a kapacitásszükséglet
r200Ö~|

termelési programot valósítjuk

2600

és a célfüggvény értéke /a vállalati jövedelem/

z = 995 000 Ft

Tegyük fel azonban, hogy a második csúcsidőszakban
most is 6800 munkanap áll rendelkezésre, amit a logikai
utón készített termelési program nem használ ki.
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Oldjuk meg a feladatot

U1

U3

-z

xl

1

1,8

4

900

*2

1

4,4
2

900

X

1

4
5

950

3 X4

1

2

@

1100

1000

2600

6800

0

X4

-z

xl

0,6

1

0,4

460

0,8

0,2

680

*3

0,5

3

0,5

400

U3

-0,1

-0,2

0,1

-110

320

1240

680

-748000

X4

-z

X

jö
0

0

1

7*1
,25

,35

290

u

-0,

0,
-0,

2

2

25

05

-170

-0

0

0

X?
,10

,75

,35

-110

U4

-0,06

-0,05

0,11

-76

72 ,

310

618

-958 800

3Cp

X4

-z

ul

2,

-0,

-0,

5

625

875

-725

U2

-0,5

0,375

0,125

-25

-0

0

0

X3
,25

,81

,44

-37,

U3
-0,

-0,

0,

15

01

16

5 -32,5

180

265

555

-1 011000

Az optimális megoldás tehát

Tiao
x = 265 u = 0
~ 0

555

1 011 000
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Ez a termelési program /behelyettesítéssel ellenőrizzttk/
mindhárom erőíorráakapacitást teljesen kihasználja és a jö-
vedelemtöbblet 16 000 Ft.

Az árnyékárak azt mutatják, hogy a földterület növelése
hektáronként 725 Ft-tal, az I. csúcsidőszak munkaerőkapaci-
tása munkanaponként 25 Ft-tal, a II. csúcsidőszak pedig
32,5 Ft-tal emelné a jövedelmet, viszont a harmadik termék
termelése hektáronként 37,5 Ft-tal csökkentené az elérhető
vállalati jövedelmet.

Tegyük fel, hogy ha a vállalat a földterületet nem is
képes bővíteni, a nem árunövénytermelő ágazatokban jobb mun-
kaszervezéssel el tudja érni, hogy az I. csúcsidőszakban
360 munkanap-kapacitást felszabadit és átirányít az árunö-
vénytermelés területére. Ennek alapján a kapacitás a követ-
kezőképpen alakul:

1000
2960
6800

Oldjuk meg most a feladatot:

ul
u 2

U3

-z

1
1,8

4

900

*2

1

4,4
2

900

X3

1

4
5

950

X4

1
2

1100

1000
2960
6800

0

u l
U2
X4

-a

xl
0,6
1
0,4

460

*2
0,8

0,2

680

X3
0,5
3
0,5

400

u?
-0,1
-0,2
0,1

-110

320
1600
680

-748000

ul
*2
X4
-z

xl

0,25
0,35

290

-0,2
0,25
-0,05

-170

X3
-0,10
0,75
0,35

-110

u 3

-0,06

-0,05
0,11

-76

0
400
600

-1020000
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xl

*2
X4

-z

ul

2,5

-0,625

-0,875

-725

u2

0,5

0,375

0,125

-25

-0,25

0,81

0,44

-37,5

u

-0,
-0,

o,

-32

3

15

01

16

,5

0

400

600

-1020000

A megoldás tehát:

£ =
400

0

600

1 020 000

Most tehát csak két termákét /az elsőt ás a másodikat/
eélszertl termelni, az erőforrásokat most is teljesen fel-
használjuk és a jövedelem az előző megoldáshoz képest
1 020 000 - 1 011 000 = 9000 Ft-tal emelkedett. Figyeljük
meg, hogy az előbbi megoldásban a második erőforráshoz
25 Ft árnyakár tartozott. Az erőforrást 360 egységgel
bővítettük, s így 360 . 25 = 9000 Ft-tal emelkedett a
jövedelem.

Bővítsük még a második erőforrást 40 egységgel, hogy
az 3000 munkanap legyen és oldjuk meg a modellt.

ul
U2
U3

-z

xl

1

1,8

4

900

*2

1

4,4
2

900

X3
1

4
5

950

X4
1

2

0
1100

1000

3000

6800

0

ul
u 2

X4

-Z

0,6

1

0,4

460

X2

4
0,2

680

X3

0,5

3

0,5

400

U3

-0,1

-0,2

0,1

-110

320

1640

680

-748000
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U 2
X4

-z

-2

o,

-50

*1
75

25

ul

1,25

-0,25

-850

0 s

0,

-o,

-25

X3
625

5

375

u 3

0,30

0,125

-25

400

40

600

-1020000

A megoldás most tehát a következő:

z = 1 020 000
0

400
0

600

A második erőforrás további 40 egységgel való bővi-
tásánek tehát nincs jelentősege, azt az adott terület ás
a II. csúcsidőszakban rendelkezésre álló munkaer-őkapaci-
tás mellett nem tudjuk felhasználni. Ebből tehát most
felesleges kapacitásunk van. A második erőforrásra most
nem is kaptunk árnyskárat, viszont jelentősen emelkedett
a területnek, mint viszonylag leginkább szűk kapacitás-
nak az árnyékára.

Tegyük fel, hogy a harmadik termák termelésére nincs
is lehetőségünk, vagyis most csak három változó szerepel
a feladatban /x,-et most x,-nak vegyük/. A folaáat mag-
oldása a következő:

ul
u,-,

U3

-z

xl

1

1,8

4

900

~ £

-i

4,4
2

S00

1

2

m
1100

1000
2 5 00

6800

0

460

0,8

a
0,2

u3 j

-0.1
~o,2 j :

0,1

680 -110 Í-7430Ű0



u , I 72

310

618

-z 290 -170 -76 -958800

x l

*2
X3

-z

ul

2,5

-0,625

-0,875

-725

-0,5

0,375

0,125

-25

U3

-0,15

-0,01

0,16

-32,5

180

265

555

-1011000

megoldás tehát
180

265
u = 0

555.
A táblázat belsejében a;

inverzét találjuk, azaz A~J

z = 1 Oil 000

A mátrix helyén most annak
-TT, azaz

A-1

ás
A A-1

2
-0

-0

1,

4

T.
0

0

,5
,625

,875

8

x
4,4
2

A

0

:

-0
0

0

L
2
10

ü"
0

1

375
125

2,5
-0,625

-0,875

-0
-0

0

,15
,01
,16

-0,5

0,375

0,125

-0

-0

0

,15
,01

,16

/A kerekítésből adódhat kisebb eltsrés/
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Végül tegyük fel, hogy árváltozás következtében a
harmadik tárnák fajlagos jövedelme 950 Ft-ról 1000 Ft-ra
emelkedik. Oldjuk meg most a feladatot:

ul
u2

-z

xl
1
1,8

4

900

x2

1

4,4
2

900

x3

rH

4
5

1000

X4

H

2

0
1100

1000
2600
6800

0

ul
u2

X4

-z

xl
0,6

1

0,4

460

0,8

0,2

680

x?

0,5
3
0,5

450

U3
-0,1
-0,2
0,1

-110

320

1240
680

-748000

ul
x2

X4
-z

xl

0,25
0,35

290

U2

-0,2

0,25

-0/05

-170

Z3

-0,10

0,75

0,35

-60

u3

-0,06
-0,05
0,11

-76

72
310
613

-958800

xl
z2

X4

-a

U-i í-̂ o ^*-o *̂"*í

2,5 -0,5 -0,25 -0,15

-0,625 0,375 [Ö78l] -0,01

-0,875 0,125 0,44 0,16

-725 -25 12,50 -32,50

180

-101I0C0
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z-
X4

-z

ul
2f30

-0,77

-0,54

-715,4

0

-0

-30

uo

S46
,08

,8

*2

0,31

1,24

-0,54

-15,43

-0,153
-0,012

-0,165

-32,3

261

327

411

,79
,16

,05

-1015089,5

A megoldás _
261
0

327
411

,79

,16
,05

z = 1 015 089,5

Most az x2-t ki kellett cserélni as x^-mal. Az Xg éa

z, változók cseréjét megtakaríthattuk volna, ha figyelem-

be vesszük a változók legnagyobb összes hozamát.

Figyeljük meg az induló táblázatot és számitsuk ki a
különböző termékekhez tartozó lehetséges legnagyobb hoza-
mot, ugy, hogy a kapacitásvektor adatait osztjuk a íajla-
gos szSkségleti adatokkal és kiszámitjuk a le|kisebb hánya-
doshoz tartozó cálfüggvssyártéket, A következőket kapjuk:

Az első termékre:

1000 : • 1 = 1000
2600 : 1,8 = 1444
6800 : 4 = 1700

A második termékre:

ás 1000 . 900 = 900 000

1000 :
26OC
6800

A harmadik termékre

1000
2600
6800

1000
2600
6800

1
4,4
.2

= 1000
= 591
= 34CŰ

591 900 = 531 900

= 1000
= 650
= 1360

A negyedik termékre;
1
2
10

-• 1000
= 1300
= 680

és 650 .1000 = 650 000

ás 680 .1100 = 748 000
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A ̂ második erőforráakapacitás a második 83 a harmadik
termékre vonatkozóan mutatkozott szűknek. /Az első termék-
nél az első, a negyediknél a harmadik erőforrás volt a
szűk kapacitás./ Amikor tehát a második erőforrásnál vé-
gezzük a báziscserét, célszerű a második és harmadik ter-
mék közül azt választani, amelyhez nagyobb lehetséges jöve-
delem tartozik. Ez pedig a harmadik termák, amelynél a lehet-
séges összjövedelem 650 000 Ft, míg a másodiknál csak 531 900
Ft-ot kaptunk. A második lépésben tehát x 2 helyett x,-at
lenne célszerű a bázisba bevonni. Gyakorlásképpen oldjuk
meg igy is a feladatot.

6.2. Degeneráció

A degeneráció problémájával már az előbbiekben találkoz-
tunk, csak akkor még azt elhallgattuk. "Vegyük az előbbiek-
ből már ismert feladatot, amikor induló táblánk a követke-
ző volt:

ul
U2
U3

-z

zl
1

1,8

4

900

x2

1

4,4
2

900

X?
1

4
5

950

XA
1

2

|io|

1100

1000

2960

6800

0

A második tábla ekkor igy alakult:

ul
U2
X4

-z

xl

0,6

1

0,4

460

x 2

0,8

4
0,2

680

X3
0,5

3

0,5

400

U3
-0,1
-0,2
0,1

-110

320
1600
680

-748000

Egyértelmű, hogy a következő lépésben a második termé-
ket kell a programba bevonni, tehát a második oszlopban
választunk generáló elemet, hiszen egyértelműen ehhez az
oszlophoz tartozik a legnagyobb célfüggvény koefficiens.
De a második oszlop hányadik eleme legyen a generáló elem?
Tudjuk, hogy a generáló elemet ugy választjuk, hogy az
utolsó oszlop elemeit osztjuk a generáló oszlop elemei-
vel és azt választjuk generáló elemnek, "ahol a legkisebb
hányadost kapjuk.
Végezzük el az osztásokat:



-

320 :

1600 :

680 :

186

0,8

4
0,2

-

= 400

= 400

= 3400

Az első és a második elemmel osztva, azonos /mindkettő-
nél legkisebb/ hányadost kapunk. Hem tudunk tehát egyértel-
műen generáló elemet választani, mert mind az első, mind
a második elem egyformán lehet generáló elem. Ilyen eset-
ben tehát, amikor nem tudunk egyértelműen generáló elemet
választani, degenerációval állunk szemben. Hogyan járunk
el ilyenkor, amikor két /vagy több/ generáló elem-jelöltünk
van?

A legegyszerűbb eljárás, ha a generáló elem-jelöltek
közül találomra választunk ki egyet generáló elemnek. Ilyen-
kor viszont előfordulhat, hogy egy táblázat később megis-
métlődik, sőt ha esetleg ismetelten ugyanúgy választjuk
a generáló elemet, "körben forgunk" és nem jutunk a fela-
dat végére. Célszerűbb ugy eljárni, hogy a generáló elem
jelöltekkel balról jobbra haladva, elosztjuk az adott
sorban lévő többi technológiai együtthatót. Amely sorban
előbb találjuk a legkisebb hányadost, abban választunk
generáló elemet. Példánkban tehát az első sort 0,8-del,
a második sort 4-gyel végigosztjuk, azaz

Első sor

0.75 j}£ = 0,625 =°o£ = -0,125

Második sor

0,25 | - 0,75 =2^2. » _o,O5

Az első hányados az első sorban 0,75, a második sorban
0,25 és mivel 0,25 < 0,75, azért a második sorban válasz-
tunk generáló elemet. A 10.1. pontban tehát jól válasz-
tottunk generáló elemet. /A megoldást már ismerjük./

A degeneráció előfordulhat már az induló táblázatban is,
vagy bármely más táblázatban. Akkor is degenerációval állunk
•••mben, ha az induló, vagy bármely más táblázatban a b
vekter elemei között két vagy több nullát találunk. Il.tn-
kor a szűk keresztmetszetet jelentő hányadosok nullák.

6.3. A programvektor és a kapacitások egyidejű optima-
lizálása

Az eddigiekben a feladatot ugy fogalmaztuk meg, hogy
rendelkezésre áll meghatározott erőforrás-kapacitás, és
ehhez kell optimalizálni a termelési szerkezetet. A gya-
korlatban azonban általában nem ez a helyzet. Egyes kapa*
citások ténylegesen meghatározott mennyiségben állnak
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rendelkezésre, mások viszont változtathatók, ha e változ-
tatás célszerű. Például lehet, hogy a rendelkezésre álló
földteriilet sriott, is gépeket és anyagokat - elvileg -
tetszés szerinti mennyiságben beszerezhetünk, vagy azükit-
hetjük, illetve bővithetjük a munkaerőlétszámot, stb.

Vegylik az előbbiekből már ismert feladatot éa tételez-
zük fel, hogy az 1000 ha földterület adva van, azon nen vál-
toztathatunk, a munkaerő viszont tetszés szerint változtat-
ható. Tegyük fel, hogy a 26OOt illetve 6800 munkanap kapa-
citás ugy adódott, hogy 100 fo munkaerő állt a vállalat ren-
delkezésére és az első csúcsidőszak kb. egy hónapot ölel
fel, amely egy hónap alatt egy-egy dolgozó 26 napot dol-
gozik, mig a második csúcsidőszak egy háromhónapos perió-
dus, s ez alatt egy dolgoz-ó 68 munkanapot dolgozhat.

Az

x x + x 2 + x 3 + x 4 i 1000

l,8x1 + 4,4x2 +4x3 +2z 4 i 2600

4x, + 2x2 -t-5x-,+10x, = 6800

900X-,

faladat

x l
l ,8x 1

4x,

+ 900x2 + <

most tehát

+ x2 + :

+ 4,4x2 +4:

+• 2 x 2 + 5 :

35O*3 +

a köve

<3 + x 4

c3 +2x4

c3+10x4

1100x4 =max.

l 0

1000

26 .

68 .

, 100

, ]00

900X-, 900x2 + 95Ox, + 1100x4 =max.

Azt mondottuk azonban, hogy most nem 100 fő áll rendel-
kezésünkre, hanem annyi, amennyi szükséges, illetve amennyi
célszerű. Ezt az egyelőre ismeretlen munkaerősziíkságletet
y-nal jelölve, a feladat a következő:

„ „ -r . . i n ,

x, + x„ -;- :>;̂  -:- 7:, s IOUJ1 i z 4

l.Sx-ĵ  + 4,4x0 -:-4x,-+2xá ^ 26 y

4x-, + 2xo +5x,+10x. "í SS y

900X-, + 900xo + 950Xo + llOOz:. =mas.



Ac j TÍOS-Í arr/sAugy isnKío'iloriköni; kezelhető,, air
x.-k. Hozzuk át tehát azokcc együtthatóikkal együtt

slőtls?iEág6'í fcal oldalár.::., száz

, nt az
gyütt az

0

1,8 2x 4 - 26y

10x, - 68y

1000

0

0

900 + 9OOx2 + 950s, H-IIOOS. max.

Most még eltekintünk attól, hogy a nmnkaerőváltozóhoz
külön célfüggvényértéket rendeljünk, hiszen a különböző
termékek jövenelciét ugy számítottuk ki, Kogy a munkabére-
ket ̂ is figyelembe vettük. Valójában a munkaerő rendelkezés-
re állásának is van költsége, de ezzel majd a gyakorlati
alkalmazás tárgyalása során £oglalkozunk» Oldjuk meg tehát
az előbbi feladatot;

Látjuk, hogy Regenerált modellel állunk szemben.

"1
ür.

o,.6 o s s o s 5 - 0 , 1 j e ^
1 4 3 -0,2 -12,4

0,4 0.2 0.5 0,1 - 6,8

1000
0
0

460 400 -110 7480 0

y
uP 2.

i-i

1

os
09

0

5

~~2

,12
.46
1

0,07

-

"3
-0,02

"0„ 02

0

U-i

0 > "̂  5

1,82

147
1823

1000

,059
,53
,00
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A megoldás tehát:

xl

y

= o,
= 147

= 0,

,06 ^

z

= o,
'147,

= 1 100

*3 "
ul =

000

o,
o,

z4 = 1000

u 2 = 18£.>,53

Most tehát mind az 1000 ha-t a negyedik termék termelé-
sére célszerű felhasználni és 147 dolgozóra van szükség.
A jövedelem 1 100 000 Ft. A munkaerőt csak a II. csúcsidő-
szakban használjuk ki, az I. időszakban 1823,53 munkanap
kihasználatlanul marad. Behelyettesítéssel meggyőződhetünk
arról, hogy az adott termelési program az I. időszakban
2000, a II. időszakban 10000 munkanapot igényel, s az I.
időszakban 3823,3 munkanap áll rendelkezésre /tehát
1823,3 munkanap felesleges/, a II. időszakban pedig
10000 munkanap. Természetesen nem mindig csak egy termék
termelése célszerű. Emeljük csak meg a második termékhez
tartozó jövedelmet mondjuk 300 Ft-tal. Máris a következő
megoldást kapjuk:

x1 = 0, z 2 = 333,98, x 3 = 0 , x 4 = 666,02

y = 106,98, u = 0, z = 1 133 398

6.4. Több célfüggvény vizsgálata

Gazdasági feladatok megoldása során általában nem csak-
egy hatékonysági mutató alapján döntünk. Heia biztos, hogy
azt tekintjük a legjobb termelési programnak, amelyhez a
legnagyobb jövedelem tartozik. Lehetséges ugyanis, hogy
ennek megvalósítása igen nagy beruházást igényel, vagy
igen sok importanyag felhasználásét teszi szükségessé,
stb. De termelőszövetkezetben a jövedelemnek is két for-
máját veszik számba, a bruttó jövedelmet /amikor a tagok
munkabarát, illetve részesedését nem számoltuk fel költ-
ségként/ ás a nettó jövedelmet /amikor a munkaerő költsé-
gét is felszámoltuk/.

Hogy a termelési programról dönteni tudjunk, célszerű
tehát a modellt több célfüggvénnyel is megoldani. Nyilván
a beruházás ás az importanyag szempontjából az a termelési
program a jó, amelyhez a legkisebb beruházás, illetve
importanyagfelhasználás tartozik. Ki azonban a minimum
feladatok megoldását még nem ismerjük,' egyelőre a maximum-
feladatoknál maradunk.

Tegyük fel, hogy az eddigi páldafeladatokat használva
kát célfüggvényt maximalisálunk.



Legyenek ezek az alábbiak:

píj- = Roo, 900. 950, liooj .

Pg = Í15OO, 1200, 1800, I60ÖI

Most tehát kát célfüggvényt vizsgálhatunk, például a
nettó jövedelmet /z-J ás a bruttó jövedelmet / z 2 / ,

s így feladatunk a következő:

ul

u 2

U3
~zl
-z 2

xl
1

1,8

4

900

1500

x 2

1
4,4
2

900

1200

X?
1

4
5

950

1800

X4
1
2
10

1100

1600

1000
2600
6800

0

0

A tanultak alapján nincs akadálya annak, hogy a fela-
datot előbb az egyik, aztán a másik célfüggvénnyel meg-
oldjuk éa a kapott eredményeket összehasonlítsuk. Ha igy
járuakel, akkor ugyanazt a modellt kétszer kell megolda-
ni, bár a számitások egy része /amig a két célfüggvény
ssérint számolva a generáló elem azonos/, esetleg csak
másolást jelent, mert a kát feladatban azonos.

CélszerUbb ugy eljárni, hogy - bár a számításokat az
egyik célfüggvény szerint végezzük - mindkét célfüggvényt
lépésről-lépésre kiszámítjuk, majd amikor az egyik cél-
függvény szerint a feladatot megoldottuk, akkor folytatjuk
a számításokat a másik célfüggvény szerint. Ennek az az
előnye ia megvan, hogy mindkét megoldáshoz mindkét cél-
függvényértéket megkapjuk anélkül, hogy a behelyettesí-
tést elvégeznénk.
Tehát

ul

n?
~zl
" Z2

1
1,8
4
goo
1500

*2
1

4S4
2

90'0
1200

*3
1

4
5

950
1800

X4

i-i

2

(IOJ
1100
1600

1000
2600
6800

0
0
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ul
U2
X4

- zl

" Z2

xl
0,6

1

0,4

460

860

*2
0,8

0,2

680

880

0,5

3

0,5

400

1000

U3
-0,1

-0,2

0,1

-110

-160

320

1240

680

-748000

-1088000

|0,4 | -0,2 -0,10 -0,06
0,25 0,25 0,75 -0,05
0,35 -0,05 0,35 0,11

72
310
618

290 -170 -110 -76
640 -220 340 -116

-958800

-1360800

275-0,5 - Q; 25 -̂0715

-0,625 0,375 [o,8l| -0,01

-0,875 0,125 0,44 0,16

180

265

555

-725 -25
-1600 120

-37,5 -32,5
500 -20

-1011000

-1476000

Az első célfüggvénnyel megoldottuk a feladatot. Foly-
tassuk a megoldást a második célfüggvény szerint, x,
oszlopában választva generáló elemet. -"

? -0,

-753

-1214

u

77

,9

,2

1

0

-7
-111

u„
c

,46

,64
,48

1,2

46,3

-617,

4

3

-0,

-33

-13

U3

012

,0
,8

261,79

327,16-

411,05

-998731,5
-1639530,2 ..
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A feladatot megoldottuk a második célfüggvény szerint
is. /ITincs szükség a táblázat többi adatára, mivel a
számítást befejeztük, ezért szokat nem is számoltuk ki./

A megoldás tehát a következő:

xl

*2
X3
X4
ul

u 2

U3

zl
Z2

Hettó jövedelem
szerint

180

265

0

555

0

0

0

1 011 000

1 476 000

Bruttó jövedelem
szerint

261,79

0

327,16

411,05

0

0

0

998731,5
1639580,2

Mint látjuk, más az optimum a nettó ás más a bruttó
jövedelem maximalizálása esetén. A vállalatvezető fela-
data, hogy döntsön, melyik termelési program megvalósi-
tása célszerű. Ha a nettó jövedelem optimumát választjuk
12 268,5 í"t nettó jövedelmet nyerünk, de a bruttó jövede-
lem 163 580,2 Ft-tal kevesebb lesz. Ellenkező esetben
163 580,2 ?t bruttó jövedelemtöbbletért elveszítünk
12, 268,5 Ft nettó jövedelmet. Hogy melyik mellett döntUnk,
az számos tényezőtől függ.

Az sem feltétlenül biztos, hogy aa egyik vagy a másik
megoldást fogadjuk el. A feltételrendszert ugyanis mind-
két megoldás kielégíti, tehát az erőforráskapacitást te-
kintve, mindkét termelési program megvalósítható. De ha
mindkét termelési program felst vesszük és összeadjuk, az
így kapott

u = 0

1 004 865,7

Zg = 1 557 790,1

program is megvalósítható az adott erőforrás kapacitással.

220
132
163
483

,9
,5
,6
.0
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A kát programot tehát k^, k2 szorzóval keverhetjük,

azaz

ás k-, = 1

és az így kapott termelési programok is megvalósíthatók.

Az opt-, ás opt-,, programot most tehát alternatív progra-

moknak fogjuk fel ás megoszlási viszonyszámok segítságá-

vel azokkal ujabb termelési programokat nyerhetünk. Ezek

egymástól különbözhetnek az erőforrás felhasználásban is

/ha azt nem egyformán használják ki/ ás a célfüggvény sr-

tákát tekintve is, de megvalósítható programok.

Ha a feladatot számítógéppel oldjuk meg, akkor is a
megoldást előbb az első célfüggvénnyel nyerjük. Ezután
a gépibe tápláljuk a második célfüggvényt ás folytatjuk
a számítást /mint előbb is/ e szerint a célfüggvény sze-
rint. A számítógép azonban esetleg - ha csak külön prog-
ramot nem csinálunk ilyen céllal - csak azt a célfüggvény-
értéket irja ki, amellyel az optimalizálást végeztük. A
programok összehasonlítását azonban megkönnyíti, ha min-
den megoldás során minden célfüggvény értékét ismerjük.
Ezt egyszerűen elérhetjük, ha célfüggvény változókat
alkalmazunk. Ilyenkor az előbbi célfüggvényeket feltétel-
ként építjük a modellbe ás a célfüggvény most tehát a
következő less:

u
u,

U4
U5

-Z-,
-z2

1
1,8
4
900

1500

0
Q

x2

1

4,4
2

900
1200

0

0

x3

1

4
5
950

1S0O

0

o

X4
1

2

10

1100
1600

0

0

zl
0

0

0

R
0

1

0

z2

0

0

0

0
_•]

Q

1

1000
2600
6300
0

0

i o
0
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Ez a következőknek felel

1500X-, 1200x2 +

95Ox

1800x,
3

= 0

HOOx, -

16OOX. -

= 1OOO

= 2600

= 6800

= 0

z-̂  = max.

Zp = max.

Álmegoldást most módosítjuk annyiban, hogy az induló
táblázatban generáló- elemet az első célfüggvényváltozó
oszlopában választunk ás most nem vagyunk tekintettel az
előjelre, azaz az-l-et választjuk. Mivel a hányados 0 lesz,
nem áll fenn a veszélye annak, hogy a b vektor koordinátái
között negatív lesz.'/A célfüggvény feltételeket beszoroz-
hatnánk -1-gyel, akkor máris pozitív lenne a generáló ele-
münk. Ekkor viszont a ̂  reláció .> -re változna, amivel

egyelőre még nem foglalkoztunk./ Az első célfüggvény sze-
rint számolva tehát a második és harmadik táblázat a kö-
vetkezőképpen alakul:

u l

U H

zl
us
-z
-z 2

xl
1
1,8

4
-900

1500

300
ű

X2

1

4,4
2

-900

1200

900
0

x 3

1

4
5

-950

1800

950

x

[|öi
-1100

-\ r f. f

iOU'J

1100
0

1
0
0
0
-1

c
1

0

z 2

0

0

0

0

-1

0

1

1000

2600

6800

0

0

0

0

Z1
U5

0s6
1

0,4
-460

860
46O
0

0,8

0
0,2

-680

880
6~80
0

os?

0,5
-400

1000

í-00
c

u.

-0,1

-0 s2

0,1

110

-150

0

al
0
0
r\

»1

0
'l_

Z2

0

0

0

0

_1

0
1

320
1240

680

-743000

-1083000

-748000
0
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• Nem folytatjuk a számításokat, hiszen könnyű belátni,
hogy azok az előbbivel megegyeznek. Ha a feladatot az el-
ső célfüggvénnyel megoldottuk, a második célfüggvényhez
tartozó -1-et választjuk generáló elemnek és folytatjuk
a számítást a második célfüggvény szerint. Mint már erről
szó volt, ennek az eljárásnak számitógépes megoldásnál
lehet jelentősége, ha a megoldásprogram egyidejűleg
csak egy célfüggvényt kezel.
A problémát igen sokféleképpen lehet még kezelni, igy a
számitógépre a megoldóprogramot többféleképpen is elké-
szithetjük.

6.5. Alternativ optimumok

Tegyük fel, hogy az
ciens 950-ről 987,5-re
tünk a következő:

x,-hoz tartozó célfüggvénykoeffi-
emelkedik, azaz induló tábláza-

ul

-z

xl
1

1,8

4

900

x 2

1

4,4

2

900

X3
1

4 '
5

987,5

X4
4
2

1100

1000 •

2600

6800

0

Ekkor az optimális táblázat:

*1

x 2

*4
-z

ul U2 X3 U3

2,5 -0,5 -0,25 -0,15

-0,625 0,375 |0,8l| -0,01

-0,875 0,125 0,44 0,16

-725 -25 0 -32,5

180

265

555

-1011000

Optimális megoldáshoz jutottunk tehát. Most azonban
a harmadik termék is bevonható a programba, s az igy ka-
pott megoldáshoz ugyancsak 1 011 000 Ft célfüggvényérték
tartozik,
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xl
X3
X 4

-z

ul
2,30

-0,77

-0,54

-725

u 2

-0,38

0,46

0,08

-25

x2

0,31

1,24

-0,54

0

u 3

-0,153

-0,012

0,165

-32,5

261,79

327;16

411,05

-1011000

Kát egyenértékű /optimális/ megoldásunk van tehát,
amelyek mindegyike eleget tesz a feltételrendszernek
és mindkét termelési programhoz ugyanaz a jövedelemtö-
meg tartozik,

azaz opt

180,

265,

0

555,

1

00
00

00_

opt11

261,79

0

327,16

_ 411,05_

u = 0 u = 0
~ ~ z= 1011000 I T

A két programot, mint alternativ optimumot, most is
keverhetjük a k-,, k 2 /k, + k 2 = 1/ megoszlási viszony-
számok alapján, s könnyen belátható, hogy az így előállí-
tott termelési programok egyénért akiiek, hozzájuk ugyan-
azon célfUggvényárték tartozik, tehát azok is optimálisak.
Ha tehát egy feladatnak két /vagy több/ optimális megol-
dása létezik, akkor végtelen sok optimális megoldása le-
hetséges.

Hasonló volt az előző pontban tárgyalt probléma is.
Ott azonban a kétféle megoldás nem volt egyenértékű, és
nem voltak egyenértékűek a keverésükkel előállított ter-
melési programok sem. Az előző pontban kapott megoldások
tehát alternativ programok voltak ugyan és eleget tettek
a feltételrendszernek de nem voltak alternativ optimumok,
hanem egyik megoldás az egyik célfüggvény szerint, a má-
sik pedig a másik célfüggvény szerint volt opti-
mális és a keverésükkel Tcapott programok egyik célfüggvény
szerint sem voltak optimálisak, hanem a két célfüggvényt
figyelembe véve, kompromisszumos megoldást eredményeztek.
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6.6. Módosított norraálfeladat

Az eddigiek során a feladatot mindig ugy fogalmaztuk Beg,
hogy a feltételrendszerek között csak < irányú egyenlőtlen-
ségek, azaz kisebb egyenlő, illetve nem nagyobb egyenlőtlen-
ségek v-oltak. Előfordul azonban olyan feladat is, amelyben a
feltételek között egyenletek is vannak.

Maradjunk továbbra is az előbbiekben vizagált gyakorlati
feladatnál, azonban tegyük fel, hogy a termelő vállalat
már leszerződött a felvásárló vállalattal, hogy az első
terméket pontosan 100 ha-on, a harmadik terméket pedig pon-
tosan 50 ha-on termeli és ezekből csak ennyit tudunk értéke-
siteni, vagy esetleg az első és a harmadik termékek takarmá-
nyok és azokból annyit kell pontosan termelni, hogy az állat-
állomány igényét kielégitsék e takarmányokból és nincs ér-
tékesitósi lehetőcégünk.

Most a feladat a következőképpen Írható fel:

xl + X2 + X3
l,8x, + 4,4xo + 4x,

1 ' <d 3

X4

Ox!

V
II

IIA

V
II

1OOO
2600

6800

100

50

900xn + 900xo + 95Ox„ + llOOx. = 33a ;c.
J. c j> 4

Most olyan nágyissieretlenes feladattal állunk ssenben,
amelybea három ̂ irányú egyenlőtlenség mellett kát egyenle-
tünk is van ás a oslfüj-g~5űj' naximumát keressük. 1 felada-
tot mátrix alakban felírva, a következőket kapjuk:

x > 0 £.- > 0 b „ > 0 - '

7i — 2̂ 2- ~ ijiax. s . '

Az' o-lyan lineáris orcgrampaás.l masimum .telaáatot, amely-

ben ^ iránya e^yealgtliiaas.gek fe l le t t eayenl£';&'i: is vannak.

taódosí tot t normálf el züg tnak nevezzük.
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Mielőtt a feladatot magoldanánk, nézaük a következő egy-
szerű, kstismeretlenes egyenletrendszert:

= 19
= 11

Az egyenlet megoldását az

*T_ = 5, x 2

adja,hiszen

2 . 5 + 3 .

5 + 2 .

Adjuk össze a két egyenletet

_ -i

3 =
"3 _

19
11

3*1*.-, x jig = 30

Az x, = 5 ás x 2 = 3 megoldás a két egyenlet összea-

dása utján nyert egyenletet is kielégíti, azaz

3 . 5 + 5 . 3 = 30

De könnyen ellenőrizhetjük, hogy e megoldás kielégíti
az előbbi kát egyenlet különbségét, szorzatát, atb. is,^
ami természetes, hiszen az x^ = 5, Xg = 3 behelyettesítés-
sel egyenlőségről van szó. Az egyenleteknek ebből a tu-
lajdonságából következik, hogy a lineáris programozási
feladatben előforduló egyenletek összegét képezhetjük, s
ezáltal egy olyan feltételt kapunk, amelynek teljesülése
esetén teljesülnek azok a feltételek is, amelyekből ezt
képeztük. A megoldás során tehát arra kell törekedni,
hogy az'egyenletek összeadásával nyert feltétel teljesül-
jön először.

Foglaljuk táblázatba tehát as előbbi feladatot:

ul
d.

u 3

%

S Z

Xl
1
1,8

4-
1
0

900
1

X2

X
4,4

0

0

900
0

X3
1

4

5
0

1

950
1

X4
"i

2

10

0

0

1100
0

1000
2600

6800
100

50

0
150
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Az igy elkészített táblázatban az egyenleteket tartal-

mazó sorokat s-gal megjelöltük. A K u . szimbólumok te-

hát arra utalnak, hogy e sorok egyenletek, s elsősorban ezek

teljesítésére törekszünk. A táblázat utolsó sorában az egyen-

leteket tartalmazó sorok /egyenletek/ összegét találjuk és

e sort Kz-vel /csillagos z/ jelöltük. E sor maga is lineá-

ris függvény és másodlagos célfüggvénynek nevezzük.

A feladat megoldása során először a másodlagos célfügg-
vényt kell megoldanunk. Éppen ezért mindaddig, amig a másod-
lagos célfüggvényt meg nem oldottuk, a generáló elemet a má-
sodlagos célfüggvény szerint választjuk meg, vagyis abban az
oszlopban, amelyben a másodlagos célfüggvény sorában a leg-
nagyobb koefficiens található.

A számításokat táblázatról-táblázatra haladva, ugyanúgy
végezzük, mint a normál feladatnál tanultuk, mindössze annyi
módosítással, hogy ameddig a másodlagos célfüggvény szerint
számolunk, a generáló elem oszlopát az uj táblázatban üresen
hagyjuk* s ezáltal elkerüljük, hogy újra abban az oszlopban
válasszunk generáló elemet.

A másodlagos célfüggvényt akkor oldottuk meg, amikor en-
nek sorában végig 0-t kapunk. Ezután a számításokat az el-
sődleges célfüggvény szerint folytatjuk, a normál feladatnál
tanultak szerinl. ~"

Oldjuk meg tehát feladatunkat:

ul
u2

U3

HU,-

-Z

Z

Xl

1

1,8

4

CO
0

QQO

1

X2

X

4,4
d.

0

0

900

X?
1
J.

4
5
0
T_

950
1

X4

1
2

10

0

0

1100
0

1000
2600
6 b CO

100

50

0

2;;0
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u?

u?

%

-z
*z

x 2

4,4
2

0

0

900
0

-]X

4
5
0

0
950
l

X4
1

2

10

0

0

no'o
0

900

2420

6400

100

50

-9OOOO

50

u?

xl
X3

-z
*z
-

x2

1-1

4,4
2

0

0

900

0
, ... ,

1

2

0

0

1100

0

eso
2220

6150

100

50

-137500

0

A másodlagos célfüggvényt megoldottuk, tehát az elsőd-
leges oálfiig^yány szerint aaá-nolunk tovább, elhagyva a
másodlagos célfüggvény sorát.

uJ 0,8
U2
xú
DC,

-Z

Í4TÖ]
0,2

0

0

680

U3
-0,1

-0,2

0,1

0

0

-110

235
990
615
100

50

-614000
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ul
*2
X4
xl

-z

u2

-0,20

0,25

-0,05
0

0

-170

u3

-0,06

-0,05
0,11

0

0

-76

37,0

247,5

565,5
100

50

-982300

A feladatot tehát megoldottuk. A megoldás:

100,

37,

= 0,

i 2 = 247,5,

u 2 = 0,

z = 982 300

50,

0,

565,5

0,

Az x l s x,-ra előirt egyenleteket teljesítettük. Az erő-
források egyikét, a területet most nem használtuk fel tel-
jesen. Az elérhető jövedele-n 982 300 Ft. Azáltal tehát,
ho§y a vállalat előzőleg - mielőtt annak célszerűségéről
szamitások utján meggyőződött volna - leszerződött az első
és a harmadik termek 100 ill. 50 ha-on való termelésére,
elveszitett 28 700 Pt jövedelmet. /Láttuk, hogy előzőleg
a feladat 1 011 000 Pt jövedelemhez vezetett./ Sőt az adott
feltételek között a teriilet egy részét /37 ha-t/ nem is
tudja kihasználni. írjuk csak elő gyakorlásként, hogy a te-
rületet teljesen fel kell használni, vagyis az első sort
is egyenletkánt kell venni. A feladatot nem fogjuk tudni
megoldani! Az adott körülmények között - erről is^könnyen
meggyőződhetünk - a terület csak akkor használható ki, ha
a második erőforrást 185 egységgel bővítjük.

Az előbb tárgyalt eljárásnak, amikor másodlagos célfügg-
vény szerint halaűva az új táblázatban a generáló elem oss-
lopát üresen hagyjuk, megvan az a hátránya, hogy as °ddig
kicserélt duális változókra nem kapunk árnyékárát. Est el-
kerülhetjük, ha megállapodunk abban, hogy a már kicserélt
csillagos duális változókat még egyszer nera visszük vissza
a bázisba, vagyis csillagos változókhoz tartozó oszlopok-
ban nem választunk generáló elemet. Ebben az esetben_tehát
nem szükséges ezen oszlopok üresen hagyása. Áz előbbi fela-
dat számításai tehát most a következőket adják:
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u 2

U3

X3
-z
*z

%

-1
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Most a másodlagos célfüggvény megoldását az mutatja,
hogy az utolsó aortán ninos pozitív elem, minden csillagos
változőt kloseréltiink a bázistól és a b vektorhoz a máand-
lagos célfüggvény sorában 0 tartozik. X másodlagos célfügg-
vény sorát most elhagyjuk, s folytatjuk a számolást as
elsődleges célfüggvény szerinti
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u l
" 2

x l

-z

*UA
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-1,0
-0,4

1
0

-460

*2

0 , 8
|4,0|
0,2

0
0

680

-0,5
-3,0
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0
1

-400
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-0,1
-0,2

0 , 1
0
0
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100
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u l
*2

x l
i 3

-z

-0,4
-0,25
-0,35

1
0

. -290

" 2

-0,20
0,25

-0,05
0
0

-170

"S
0,10

-0,75
-0,35

0
1

110

U 3

-0,06
-0,05

0,11
0
0

-76

37,0
247,5
565,5
100,0

50,0

-982300

Most a feladat megoldása az árnyékárakat is mutatja.
Hogyan értékelhetjük ezeket.

Az első feltételhez nem tartozik árnyékár, hiszen u,-et
ki sem cseréltük a bázisból. A meglévő kapacitást sem tudtuk
tehát kihasználni, igy bővítésének számunkra - az adott fela-
dat, illetve adott körülmények között - nincs jelentősége,
vagyis a kapacitásbővítésnek számunkra nincs "értéke".

A második erőforrást kihasználtuk. Ha egy egységet meg-
takaritanánk, ezáltal 170 Ft-ot veszítenénk, illetve a ka-
pacitás egységnyi bővítése 170 Pt jövedelem-emelkedést
eredményezne. Hasonló a helyzet a harmadik erőforrásnál 76 Pt
erejéig.

Az u.-hez - 290 árnyékár tartozik. Ha tehát a szerződést
nem 100Tia-ra kötötték volna, hanem kevesebbre, akkor annyi-
szor 290 Pt-tal csökkenne a jövedelmünk, ahány ha-ral keve-
sebbre szólna a szerződésünk, illetve, ha a szerződött té-
rület bővíthető, e bővítés ha-onksnt 290 Pt-tal emelhetné
a vállalati jövedelmet.
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Az Uc-höz viszont pozitív árnyékár tartozik. Most tehát
az előbbivel ellenkező hatást tapasztalunk, vagyis a szer-
ződött terület csökkentése által növekedne, - s kiterjesz-
tése által csökkenne a jövedelem ha-onként 110 ft-tal.

A 6.3» - 6.5# pontban tárgyaltak tehát a degeneráció,
a programvektor ás a kapacitások egyidejű optimalizálása,
a több célfüggvénnyel való számolás ás az alternatív opti-
mumok problémája - természetesen a módosított normál fela-
datra, sőt a következőkben tárgyalandó általános esetre és
minimum feladatokra is érvényesek. A tanultak alapján könjw
nyen belátható az is, hogy a módosított normál feladat és
az általános eset is visszavezethető normál feladatra.

6.7. A maximálás általános esete

Az előbbi megoldást értékelve, tegyük fel, hogy a követ-
kezőképpen okoskodunk: A két termák területére már leszerződ-
tünk. A harmadik növényre megkötött szerződés változtatására
nincs lehetőségünk, mert a partner ragaszkodik a megkötött
szerződéshez és felbontásához, vagy a terület csökkentésé-
hez nem járul hozzá, de a terület növelásét sem akarja, bár
ezt mi sem erőltetjük, hiszen a számítások szerint ez nem
volna célszerű. Az a partner viszont, amelyikkel az első
termékre szerződtünk, szivesen kötne szerződést további
területre is. /Vagy ha két takarmánynövényről van szó ás
feltesszük, hogy az elsőt eladásra is termelhetjük, tehát
annak területét növelhetjük, hasonló helyzetben vagyunk./

Ennek az okoskodásnak az a következménye, hogy megkísé-
reljük a modellt ugy megoldani, hogy az első termékre nem
egyenletet, hanem alsó korlátot / ̂  relációt/ adunk meg.

Mivel ugyanis az előbbi megoldásnál az u.-hez tartozó ár-
nyékár azt mutatta, hogy célszerű volna a korlát tágítása
/vagyis^nagyobb területen való termelés/, azt reméljük,
hogy ezáltal erőforrásbóvítés nélkül nagyobb jövedelmet
érünk el. Sőt ragaszkodunk ahhoz is, hogy a területet tel-
jes mértékben kihasználjuk, s az első termák területének
kiterjesztésével reményünk van erre is.

Ennek alapján feladatunk a következő:

Z]L, x 2, x 3, x 4 = 0

x]_ + x 2 + x, + x 4 = 1000

l,8x1 +4,4x2 + 4x, + 2x 4 = 2600 . t

4xx + 2x 2 + 5x, + 10x4 = 6800

x 2 -^ 1Q0
x 3 = 5 0

+ 95Ox, +1100x. = max.
3 4
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Olyan maximumfeladattal állunk tehát szemben, amelyben
a feltételek között mind a, mind % relációjú egyenlőtlensé-
gek, mind pedig egyenlet /=/ is található. Ez a maximálás
altalános esete. Mátrix alakban az általános eset tehát

3

P T x max.

Az > irányú egyenlőtlenséget többletváltozó bevezeté-

sével egyenletté alakithatjuk, s ezáltal módosított nor-

málfeladatot kapunk, azaz feladatunk:

*!» *2»
 X3» X4» Tl = °

xl +

l,8x1 + i

4xx +

xl

Xg

U4x2

2x2

+

+

+

X3
4x3

5x3

x ?

+ X4

+ 2x4

+ 10*4

r-l

= 1000

S 2600

> 6800

100

50

9OOx2 +95Ox, +1100x. = max.

Most tehát a feladatot, mint módosított normál feladatot
oldjuk meg, amit már ismerünk. Oldjuk meg tehát a feladatot:

U2
U3

* U4
*u5

-z
Kz

xl

h-
i

1,8

4

IU
C

900
2

x2

1
4,4
2

0

0

900
1

x 3

1
4
5

0

1

950
2

X4
1
2

10

0

0

1100
1

vl

0

0

0

-1

0

0

-1

1000
2600
6800

100

50

0

1150
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ul
U2
U3

*U5
-z
sz

Ku 4

-1

-1,8

-4
1

0

-900
-1

*2

1

4,4
2

0

0

90Ü
0

x3

1

4
5
0

HI
950
1

X4

1

2

10

0

- o
1100

0

V,
JL

1

l,£
4
-1

0

900
1

900

2420

6400

100

50

-90000
1050

u2

U3
xl
x?

=z
*z

%
-1

-1,3

-4
1

0

-900
-1

X2

1

4,4
2

0

0

900
0

-1

-4
-5
0

1

-950
-1

X4
1
2

10

0

0

1100
0

vl

[3
1.É

4
-1

0

900
1

850

2220

6150

100

50

-137500
350

vl
U2
U3

x3

-z
Ez

Ku 4

_x
0

0

0

0

0
0

x2

1
2,6
-2

x
0

0
-1

*U5

-1

-2,2

-1

1

1

-50
0

Z4

1
0,2

GOi
0

200
-1

Ul

1

-1,8

-4
1

0

-900
-1

850
690
2750

950
50

-9O25OO
0
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Â másodlagos célfüggvényt elhagyjuk és folytatjuk a
számítást az elsődleges célfüggvény szerint.

v l
U 2
X 4
x l

-z

- 1
0
0
0
0

0

1,33
IjLjjL
-0,33

1,33
0

66,67

E u 5

-0,83
-1,87
-0,17

1,17
1

-16,67

U3

-0,17
-0,34

0,17
-0,17

0

-33,

* u l

1,67
-1,67
-0,67

1,67
0

33 -766,67

391,67
598,33
458,33
491,67

50

-994166,67

v l
Z 2
X 4
x l
X 3

-z

s

- 1
0
0
0
0

0

u 4 u 2

-0,50
0,38
0,12

-0,50
0

-25,06

0,10
-0,70

0,40
2,10
1

30,20

u 3

0
-0,13

0,13
0
0

-24,81

%

2,50
- 0 ,
- 0 ,

2 ,
0

-724

63
87
50

,8

92,50
224,94
532,56
192,50

50,00

-1009163,1

A megoldás tehát:

^ = 192,50

x 2 = 224,94

x 3 = 50,00

x 4 = 532,56

v]_ = 92,50

z = 1 009 163,1

u = 0

Most tehát minden erőforrást kihasználunk. /A területet
is!/ Az első termák termelését 92,5 ha-ral kell bővíteni,
azaz az előbbi 100 ha helyett 192,5 ha-on kell termelni.
/A V-, a többletet mutatja./ Természetesen, ennek megfele-
lően a többi termák termelésének terjedelme is változik.
A jövedelem 1009 163 Ft, vagyis az előbbihez képest
26 863 Ft-tal emelkedett.
/Ez kerekítési hibáktól eltekintve, 290 . 92,50 = 26 825-nek
felel meg./
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6.8. Minimumfeladatok

Az eddigiek során kizárólag olyan matematikai programo-
zási feladatok megoldásával foglalkoztunk, amikor a cél-
függvény maximumát kerestük. Már említettük azonban, hogy
a gazdasági feladatok optimalizálásánál különböző haté-
konysági mutatókat vizsgálhatunk, különböző célfüggvé-
nyekkel dolgozhatunk. Gyakran olyan feladatokat kell meg-
oldanunk, amikor a célfüggvénynek nem a maximumát, hanem
sppenhogy a minimumát keressük ás azt a programot tekint-
jük optimálisnak, amelynél a célfüggvény minimumát kapjuk.
Például célunk lehet olyan termelési program kidolgozása,
amely minimális beruházást igényel, vagy amely minimális
termelési költségjet, vagy minimális importanyag felhasz-
nálást, stb. kivan. Később foglalkozni fogunk a takarmány-
adagok összeállításával. JJkkor az lesz a feladatunk, hogy
minimális költségű takarmányadagot tervezzünk, vagy olyan
takarmánytermelési szerkezetet tervezzünk meg, amely az
adott állatállomány eltartását minimális területen, vagy
minimális termelési költséggel teszi lehetővé.

A továbbiakban tehát minimumfeladatokkal fogunk foglal-
kozni. A minimumfeladatok megoldása - mint látni fogjuk -
egyáltalán nem fog nehézséget jelenteni számunkra. A maxi-
mumfeladatok megoldására már megismert módszer ugyanis al-
kalmas minimumfeladat megoldására is, mivel minden mini-
mumfeladat visszavezethető maximumfeladatra.

A középiskolai tanulmányokból is ismeretes, hogy egy
függvény minimumhelye azonos ellentétjének maximumhelyé-
vel. Ábrázoljuk csak az

11 = 5 + 3x + 0,5 x 2

másodfokú, majd az

Y 2 = -5 - 3x - 0,5 x2

másodfokú függvényt.

Az Y 1 minimumhelye (xQ = -3) és az Y 2 maximumhelye

(xQ = -3) egybeesik.

Az Y 1 függvény minimuma egybeesik az Y 2 = -í-^ függvény

maximumával, azaz

Llmin " •>? ' i2max•£ *i _.; — "~ _ 3 T % -1- n_».- — — ™"-^^T>

azaz mivel "
Y 2 = -Yx, azért -
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Hasonlóképpen a

függvény minimuma ott van, ahol a

függvény maximuma található, azaz

min f /x/

ott van, ahol

max

található, továbbá

min. f /x/ = max

az alábbi ábra szerint:

min 1/x/ = f /xQ/

-f /x/

max(- f/x/)= f

16.ábra

Függvény minimuma és-1-szeresének
maximuma

Az elmondottak alapján tehát az

£ - 0» IS. - 2

c_ x. = min.
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feladat az

x é o 2 o

7 1 Z '
A 3 X é b3 _

- £_ x_ = max.

feladatra vezethető vissza. A minimum feladatot tehát a
célfüggvény -1-gyel történő beszorzásával maximumfela-
dattá alakítjuk át és éppen ugy végezzük a számításokat,
mintha maximumfeladattal állnánk szembe.

Vegyük a következő feladatot:

xl
xl
xl
xl

10x1

xi» x;

+ 2x2 -

+ 4X2 -

+ 2x2

+

+ 2Ox2 -

>' X3

v 3x3

h 2x3

x3

h I6x3

=A
H

 /
VII

VII

=

V

10
12

7 -
8

minimum

Az első két feltételt v-, ás v 2 többletváltozók bevezeté-

sével egyenletté alakítjuk, s ekkor a feladat:

x.^ x2, Xj, v x, v 2 = 0

xl
xl
xl
xl

10xx

+ 2x2 H

+ 4x2 ,
+ 2x 2

+ 2Ox2 1

1- 3x 3 -

H 2X3 -

r I6X3

Vl
V2

10
12

i 7
^ 8

= minimum.

Alakítsuk át a feladatot maximum feladattá úgy, hogy
a célfüggvény mínusz egyszeresének maximumát keressük.
/Tudjuk, hogy ez az eredeti célfüggvény minimalizálását
jelenti/.
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2x2
<

<

0

10

12

7

8

-10x1 - 20x2 = maximum!

Oldjuk meg a feladatot ás foglaljuk a szokásos táb-
lázatba az eredményt.

* u l

* U 2
U3
U4

—z
K z

x l

1

r-l

1

- 1 0

2

X2

2

ED
2

0

- 2 0

6

3
2

0

1

-16

5

v l

M
0

0

0

0

r-
l

V2

0

- 1

0

0

0

- 1

b

10

12

7
8

0

22

* u l
x2

u3

• U 4

—z
Kz

x l * l

0,50

0,25
0,50

1

- 5

0 ,5

X2 X3

1]
0 ,5

- 1

1

-6

2

v l

- 1

0

0

0

0

- 1

V2

0,50

-0,25
0,50

0

-5

0 ,5

b

4

3
1

8

60

4

x 3

Z 2
U3
U4

-z
*z

xx *u2

0,250

0,125

10,750]
0,750

3,5
0

*u l v l

-0,50

0,25
-0,50

0,50

-3
0

V2

0,250

-0,375
0,750

-0,250

-3,5
0

b

2
2

3
6

72

0
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Z 3
X2

U4

-z

-1 % "•

-0,33
-0,17

1,33
1

-4,66

*1 v l

0 , 4
0 , 3

-0 38
0 , 6

-1,7

V 2

0
-0,5

1
- 1

0

1
1,5
4
3

86

Vegyük észre a következőket.

a., A számítások során a -z értéke végig pozitív, szemben
a maximum feladatnál tapasztalt negatív előjellel.
Természetesen ennek megfelelően z srtáke negatív.
E szerint tehát az optimális megoldásban z = -86,, azaz
86 egységnyi veszteségünk keletkezett, s ez egy-
ben az elérhető legkisebb veszteság is.

b., A harmadik táblázatbansz értéke nullára redukálódott.
Innen kezdve a másodlagos célfüggvényt elhagytuk, s a
számításokat az elsődleges célfüggvény szerint foly-
tattuk.

c , A legkevésbé veszteséges terméket 4 egységben termel-

jük /x 1 = 4/, ugyanakkor a második termékből /a leg-

nagyobb- veszteséget adóból/ többet termelünk

/x, = 1,5/, mint a kevésbé veszteséges harmadik termék-

ből /i, = 1/. Ennek oka, hogy a második termák nagyobb

mártákben járul hozzá ahhoz, hogy a második feltételün-

ket /legalább 12 egyság teljesítése/ megvalósítsuk,

mégpedig ennek végrehajtása okoz nagyobb nehézséget.

Lássunk most egy gyakorlati példát. Tegyük fel, hogy
abrakkeveréket kívánunk optimalizálni tejtermeléshez.
Három takarmány áll rendelkezésünkre amelyek beltartalmi
értékei és árai a következők:
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szárazanyag

nettó energia
laktációra

nyers fehérje

ár

g /kg

MJ/kg

g /kg
Ft/kg

Kukorica
dara
912

7,84

91,20

3,96

Extr.napra,
forgó
908

6,27

364,11

7,4

Búza
dara
909

7,55
136,35
3,71

Egy kilogramm tej előállításához szükség van 3,1 Mega-
joule /MJ/ nettó energiára ás 87 g fehérjére.

Legyen mág követelményünk, hogy az 1 kg tej termelésé-
hez adandó abrakban legalább 0,15 kg kukorioadara legyen
és az extrahált napraforgódara és a búza dara mennyisége
nem lehet több 0,15 kg-nal.

E

ahol

szerint i

1

91

3

X-

raodellünk:

,84 x 1 + 6

,20

,96

xl
xl

zl

a t

+

+

364

7

,27

,11

,4

x2

*2

x2

x2

cukoricadara

+

+

+

>

7,

136,

3,

55

35

71

0

X3

*3

x 3

>

=

3,1

87,0

0,15

0,15 ~"

0,15 •

min!

-

X5 az extrahált napraforgó

x„ a búza dara adagba keverendő,-egyenlőre
ismeretlen-mennyiségei.

A modell megoldása a következő takarmánykeverékhez
vezet:

kukorioadara 0,15 kg

extr. napraforgó 0,15 kg

búzadara 0,14 kg

A keverék ára 2,21 Ft
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Ez az adag 400 g szárazanyagot, 3,15 IIJ nettó energiát
és 87 g nyers fehérjét tartalmaz.

6.3. Héhány megjegyzés a lineáris programozás
alapeseteihez

A továbbiakban röviden foglaljuk össze a lineáris
programozási feladatok alapeseteit ás a feladatok megoldá-
sával kapcsolatos néhány tudnivaló.

Láttuk, hogy az

£ = 2« £ = 2, ' '

á. £ = IS.
T
P x = mai.

feladatot, tehát amikor a feltételi egyenletek mindegyike
kisebb egyenlő alakban van megfogalmazva és a célfüggvény
maximumát keressük normál feladatnak nevezzük.

Amennyiben egy maximum feladatban a feltételeket na-
gyobb egyenlő formában imánk elő, a feladatot nem tudnánk
megoldani. Ilyen esetben ugyanis azt írnánk elő, hogy
legalább b mennyiségű erőforrást fel kell használni, de
bármennyiT felhasználhatunk és keressük a célfüggvény
/mondjuk a vállalati jövedelem/ maximumát. Nyilvánvaló,
hogy jövedelmező termelési tevékenységek esetén akkor
kapjuk a legnagyobb jövedelmet, ha a termelést a végte-
lenbe kiterjesztjük. Ekkor a jövedelmünk is végtelen nagy
lesz. A feladatnak tehát nincs felső korlát.ia /nem korlá-
tos feladat/ így nincs is megoldása.

x £ 0, b = 0

l
m

P x = max.

feladat tehát nemkorlátos.
Amennyiben azonban a célfüggvény-koefficiensek mind

negatív előjelűek, a feladat olyan, mintha- minimum fe-
ladat volna, azaz ha c^ p^ minden esetben fennáll,
akkor az s

x = 0

m
(-P )x = max.
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feladat egyenlő az

x = 0 . •

A x £ b

_c x = min.

feladattal, s az ilyen feladatnak van /ha van/ optimális
megoldása.

Fordítsuk meg csak a relációkat és legyen feladatunk
az ^

x = 0

A x = b ,
T

£ x = min.

feladat. Optimális megoldásként a zérusvektort kapjuk.
Természetes ugyanis, hogy a célfüggvény akkor lesz minimális

/ ° / ha nem csinálunk semmit, vagyis ha x = 0,

Amennyiben a feltételek között mindhárom relációt meg-
találjuk akkor mind a maximum, mind a minimum feladatnak
lehetséges optimális megoldása.

6.10. Dualitás

Az eddigiekben láttuk, hogy a lineáris programozási fe-
ladatok megoldása során az árnyákárak a termelési erőforrá-
sok bizonyos gazdasági felértékelését teszik lehetővé.
Láttuk azt is, hogy az árnyákáraknak milyen nagy jelentősé-
gük van a gazdasági értékelés során, segítségükkel az erő-
forrásokat - az adott feltételek között - felértékelhetjük,
s dönthetünk arról, melyik erőforráskapacitás bővítése a
hatékonyabb.

Láttuk, hogy' az

Á x = b x = 0

normál feladat az úgynevezett hiányváltozók /segádváltozók/
bevezetésével az

u + A x = b x = 0 u = 0

Tp_ x = max.

formában is felírható, ahol az u vektor komponensei a duális
változók, míg az x vektor komponensei a prímái változók.

Minden lineáris programozási feladathoz megadható eg_y
vele szoros kapcsolatban lévő másik lineáris programozási
feladat is, amelyet az eredeti /úgynevezett primál/ feladat
duáljának /duális feladatnak/ nevezzük. A dual íeladat vál-
tozói éppen az u vektor komponensei, azaz a duális változók.
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<T 0

primális feladathoz tehát az

iT ü - 2.
Tb u = min.

duális feladat tartozik.

A dualitás könnyebb megértése céljából induljunk ki egy
leegyszerűsített gyakorlati feladatból. Tegyük fel, hogy
egy vállalat háromféle anyag felhasználásával háromféle
terméket állit elő. Az első anyagból 70, a másodikból 55,
a harmadikból 60 egység áll rendelkezésre. A fajlagos
anyagszükséglet ás a fajlagos jövedelem ismeretében fel-
írhatunk egy lineáris programozási modellt, feladatul
tűzve ki olyan termelési szerkezet meghatározását, amely
a legnagyobb jövedelmet biztosítja és egyik anyagból sem
igényel többet, mint a rendelkezésre álló kapacitás.
Legyen modellünk a következő:

3X-,

2*2

70

55

60

+ 50x, = max!i
Mint látjuk, a feladat induló táblája szimbolikusan a

formában is felirható. Oldjuk meg a feladatot.
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u l
u2

U3

X l

1

3

1

70

x2

2

1

DO-
^80

x 3

2

1

1

50

70

55

60

0

u l

"2

x2

- z

x l

0

nm
0 , 5

30

U 3
- 1

-0,5

0 , 5

- 4 0

X3
1

0 ,5

0 ,5

10

10

25

30

-2400

u l

x l

X2

-z

U2

0

0 , 4

-0,2

-12

U 3

- 1

-0,2

0 , 6

-36

X3

EJ
0 , 2

0 , 4

4

10

10

25

-2700

X3
x l

x 2

—z

u2

0

0 , 4

-0,2

-12

U3
- 1

0

1

- 3 2

u l

1

-0,2

-0,4

-4

10

8

21

-2740



A megoldás tehát:

8

21

10
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u = 0, z = 2 740

Az előbb megoldott feladatot prímái feladatnak ne-
vezzük. Ezután azonban fogalmazzuk meg a feladat duál-
ját, azaz a duál feladatot. Ez a következő;

u 2, u 3

3u2
70

80

50

70U, 55u2 60u,

amelyhez szimbolikusan felirva a

u T

min!

induló tábla tartozik. Mint látjuk, a feladatban az osz-
lopok és a sorok szerepét felcseréltük, a < relációk
helyett ^ relációkat irtunk és a célfüggvényt maximálás
helyett minimáljuk.

Oldjuk meg a feladatot

X 3

—z

u l

1

2

2

-70

U 2

3

1

1

-55

U3

0
2

1

-60

70

80

50

0
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U2

u3

X3

-z

ul
0

1

0
-10

xl

0,4

-0,2

-0,2

10

x2

-0,2

0,6

-0,4

25

12

36

4

2700

U2

U3
ul

-z

X3

0

-1

1

10

xl

o,
0

-o,

8

4

2

X

-0

1

-0

21

2

,2

,0

,4

12

32

4

2740

A megoldás tehát
4

12

32

x = 0, z = 2 740

Hasonlítsuk össze a két feladatot és azok megoldását:
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Primal feladat

*!• x2, x3

x + 2x + 2x

X 2 3

70x1 +80x2 +5OX3

1

Í

=

0

70

55

60

max!

ul'

ul

2 ul

2 ul

70ux

Duális

, u2, u3

+ 3u2 + u3

+ u2 + 2u3

+ u2 + u3

+55u2 +6Ou3

feladat

' 
II

V

2

II
V

A
ll

=

0

70

80

50

min!

ul

u2

u?

-z

xl

rH

3

1

70

x2

2

1

2

80

x3

2

1

1

50

70

55

60

0

! „

X-,

-Z

Ul

1

?

2

-70

u2

3

1

1

-55

u3

1

2

1

-60

70

80

50

0

ul
u2

x2

-z

xl

0

2,5

0,5

30

U3

-1

-0,5

0,5

-40

X3

1

0,5

0,5

10

10

25

30

-2400

Xl

U3
x3

-z

ul

0

1

1

-10

u2

2,5

0,5

0,5

-25

X

-0,

0,

-0,

30

2

5

5

5

30

40

10

2400

ul
xl

X2

-z

u

0

0,

-0,

-12

2

4

2

U?
— 1

-0,

0,

-36

2

6

0

0

4

X3
1

,2

,4

10

10

25

-2700

U2

U3
x3

-z

ul

0

1

1

-10

xl

0,4

-0,2

-0,2

10

X

-0,

0,

-0,

25

2

2

6

4

12

36

4

2700
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X3
xl
X2
-a

U2

0

0,4

-0,2

-12

U3
-1

0

1

-32

-0

-0

-4

ul

1 10

,2 8

„4 21

-2740

u2

U3
ul
-s

Z3
0

-1

1

10

xl

0,4

0

-0,2

8

*2

-0,

1

-0,

21

2

4

12

32

4

2740

A két optimális tábla összehasonlításából könnyen észreve-
hatjiik, hogy ha a primal feladatot megoldottuk, ennek opti-
mális táblázatából á duális megoldás, illetve a duális fela-
dat optimális táblázatából a prímái feladat megoldása leol-
vasható. Mindössze a sorok és oszlopok szerepét kell felcse-
rélni és közben.a primál feladat optimális táblázatának utol-
só sorát, illetve a duális feladat optimális táblázatának
utolsó oszlopát -1-gyel beszorozni.
Az optimális megoldás tehát:

a primál feladatnál

21

10

a duál feladatnál

12

32

z = 2740 z = -2740

A célfüggvény értéke tehát a két feladatban azonos, /előjele
különböző/ azaz

T
2. x opt. 740

A primál feladatban a célfüggvény maximumát kerestük,
mig a duál feladatban minimumát. Ez általában is igaz, asaz
ha a primál feladat maximumfeladat, akkor a duál feladat
minimumfeladat, és fordítva, ha a primál feladat minimumfe-
ladat, akkor a hozzá tartozó duálfeladat raaximumfeladat. A
dualitás tehát szimmetrikus fogalom.

E szerint tehát a maximumfeladat duálja minimumfeladat
ás fordítva:

Primál feladat

A x i b

Duál feladat

T y
A u_ & 2.

p_ x = max. b u = min.
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A i U I ^ ATv i £
rn I m

p i = min. b v = max.
— ĵ —

Ebből könnyen észrevehetjük, hogy előbbi esetben a
hiáayváltozók u, utóbbi esetben a többletváltozók v a

duális változók". Ha a feladatban egyenletek is szerepelnek,
akkor vagy két egyenlőtlenséggel felírva a feltételt,
nyerjük a megfelelő duális változókat, vagy pedig_ megtart-
juk az egyenletet, de a hozzá tartozó duálváltozot csillag-
gal jelöljük /mesterséges hiányváltozó/, amelyet a duális fe-
ladatban kötelező a bázisba bevonni. Az ilyen csillagos
/mesterséges hiányváltozó/ hiányváltozókra nem kötjük ki a
nemnegativitást*.

A duális feladat duálja maga a prímái feladat. E szerint
minden feladat duáljának duálja.

A lineáris programozási feladatok duális /kettős/ termé-
szete, mint láttuk, jól hasznosítható a gyakorlatban. Szt
mondja ki a dualitás tétel: Ha a prímái és duál feladatok
közül valamelyiknek van megengedett megoldása és véges op-
timuma, akkor a másiknak is van megengedett megoldása és
yéf.es optimuma, és a két feladat optimális célf üggvényér'íé-
ke egyenlő. A tétel bizonyításától eltekintünk.

A duális megoldást, mint ismeretes, árnyákárnak is ne-
vezzük, mert mintegy felértékeljük az erőforrásokat. Ugy is
értelmezhetjük a duális feladatot, hogy minden termelési fo-
lyamat a termelés duáli3 oldalaként egy értékelési folyama-
tot hoz létre, mintegy felértékelődnek a termelési források.
Feltehetjük a kérdést, hogy az előbbi vállalat számára mennyit
érnek a különböző anyagok. Nyilván annyit, amennyivel segít-
ségükkel képesek vagyunk emelni a vállalati jövedelmet. Leg-
feljebb ennyit hajlandó a vállalat fizetni ezen anyagokárt,
hiszen ha azok ennél többe kerülnének, már veszteséges volna
felhasználásuk.

6.11. Duál szimplex módszer

Induljunk ki az y • '

4x x + x 2 l 16

2x, + x0 2 10
> r

2x, t 6

x o 2 4 , .-.. í;

8x1 +4x2 ^ mm.
minimumfeladatból.
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Ennek megoldása /a tanultak alapján könnyen ellenőriz-
hetjük/

3

A feladat duálja

z = 40

h 2v 3

I6v,

Oldjuk meg a duális feladatot:

A megoldás tehát

S 0

= 8

= 4

= max.

Xp

-a

V2
-z

vl
V2
-z

0

-0

-4

0

-0

-3

vl

1

16

xl

in 
in

CM
 

C
M

xi

,5

,5

V2
2

1

10

V2

0,5

2

X2

-1

2

-4

V3
2

0

6

V3
0,5

-0,5

-2

V3

1

—1

0

V4
0

1

4

v4

0

1

4

V4

-1

2

0

8

4

0

CM
 

C
M

-32

0

4

-40

z = 40
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Most azonban a v^ ás v. oszlopokban az utolsó sorban 0
van, tehát a számítást folytathatjuk azok bevonásával. Ha
a Vo-ai; vonjuk be a bázisba, generáló elemként az első ele-
met ^választhatjuk, a hányados igy 0, vagyis a megoldás nem
változik. Eltérő megoldáshoz jutunk azonban, ha v.-et vonjuk
be a bázisba, amikor is a következő táblázathoz jutunk:

v l
V 4

*z

r l
0,25

-0,25

-3

*2
0

1

—4

V 3
0,5

-0,5

0

V 2

0,5

0,5

0

C
O

 
C

M

- 4 0

Most tehát a megoldás

v = 40

A duál feladatnak tehát két optimális megoldása van.
A primál feladatnak csak egyféle megoldása van. Ez abból is
kitűnik, hogy a duálfeladat két optimális táblázatában a
primálváltozőkhoz ugyanakkora értékek tartoznak.

A feladatot tehát megoldhatjuk primál feladatként és
megoldhatjuk duálpárjának megoldásával. A továbbiakban egy
újabb lehetőséggel, a duál szimplex módszerrel ismerkedőnk
meg.

Az
0

16

10

6

8X]_ + 4xg = min.

faladatot normál feladattá alakíthatjuk. Ekkor a következő-
tcet nyerjük?
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-2x,

- 225. -

> 0

i -16

Í . -10

Í -6

o - 4

Host tehát normál feladattal állunk saemben. Ezt a
féladatot most ugy oldjuk meg, hogy a generáló elemet nem
egy oszlopvektorban keressük a

b-i
min l • <*—I , SJJ ^ 0

hanem egy sor-rektorban a

min
\

alapján. Generáló elem tehát most csak negatív elem lehet.
A számítások egyébkent megegyeznek az eddig tanultakkal.
Oldjuk meg tehát a feladatot:

v l

V 2

r 3
V4

-z

x l

si
- 2

- 2

0

- 8

*2

- 1

__̂

0

-1

-4

-16

-10

- 6

-4
0

A -í> oszlopban most kikeressük a legkisebb eleaet. Ez
történetesen a -16. Moat ebben a sorban lévő elemekkel
/-4f -1/ képezzük a -o_ elemeivel a következő hányadosokat:

= 4
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Azt az osztót választjuk generáló elemnek, amelynél a
legkisebb hányadost kaptuk /-4-et/. Elvégezzük a bázis-
cserét a primál szimplex módszernél tanultak alapján és
a következő táblázatot kapjuk:

V2
V3
V4
-z

v

-0
-0
-0
0

-2

i-i

,25
,5
,5

0
-0
0

Ei
-2

X2

,25
,5
,5
]
i

4
-2
2

-4

32

Folytatjuk a számítást az előbbiek szerint ás a következő
táblázathoz jutunk:

x 1

V2
V,

x 2

-z

Tl

-0,25

-0,5

-0,5

0

-2

V4
0,25

-0,5

0,5
-1

-2

3
0
0

4

40

Megoldottuk tehát a feladatot.

A primál feladat megoldása:

3
= 40

A duál feladat egyik optimális megoldása

Y
0

0

2

Mivel a b vektorban a v 2 és v,-hoz nulla tartozik, a

számítás folytatható ás megkapjuk a duális feladat másik

optimális megoldását, mint azt már láttuk.

= 40
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Természetesen, ha a duál feladatnak több alternatív
megoldása van, akkor ezek konvex lineáris kombinációi
adják az összes megoldást, azaz

ahol

= 1 és fc 0 /i = 1, 2, ..., n/

Megjegyezzük, hogy a duál szimplex módszernél is talál-
kozhatunk degenerációval, vagy lehetséges, hogy a feladat
nem oldható meg, azaz ugyanazon problémákkal találkozhatunk,
mint a prímái szimplex módszerrel kapcsolatban tanultuk.

6.12. Módosított szimplex módszer

Tekintsük az alábbi feladatot:

2 xl

= 0

- 9

= 18

= 16

lOx-, +12x2 + I3X3 + 5x, + őx,- +

Oldjuk meg prímái szimplex módszerrel:

2X, = max.

ul
u2

U3

-z

xl

1

2

4

10

x2

1

0
2

12_

X3

1

2

0

5

X4
1

0

5

X5

1

2

0

6

X6

1-1

1

0

2

9

18

16

0
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ul

X2

u3

0

0

3

4

xl

,5

,5

-0

0

-0

-3

u2

,25

,25

,5

X

0,

o,
-1

-1

3

5

5

X4

0
0

l

5

X

o,
0,

-1

0

5

5

5

0

0

-0

X6

,75

,25

,5

4

4

7

-54

,5

,5

X4
x 2

u 3

-z

xl U2 *3 ul *5 X6

0,5 -0,25 0,5 1 0,5 0,75

0,5 0,25 0,5 0 0,5 0,25

|2,5|-O,25-l,5 -1 -1,5 -1,25

1,5 -1,75-3,5 -5 -2,5 -4,75

4,5

4,5 ^ •

2,5

-76,5

x4

x2

xl

-z

-0

-0

0

-0

U3
,2

,2

,4

,6

u2

-0,2

0,3

-0,1

-1,6

0

0

-0

-2

x3

,8

,8

,6

,6

ul X5
1,2 0,8

0,2 0,8

-0,4-0,6

-4,4-1,6

1

0

-0

-4

X6

,5

,5

,0

4

4

1

-78

Bár viszonylag nagyon egyszerű feladatot oldottunk meg,
mégis elég sokat kellett számolnunk. Könnyen észrevesszük
azt is, hogy sok fölösleges számolást végeztünk, hiszen
a bázisba csak a változók felét vonhattuk be. Ha előre
tudtuk volna, hogy az x,, x^ és Xg változók nem vonhatók

be a bázisba, azok oszlopaiban nem végeztük volna el a
számításokat, hiszen e számitásokra nincs szükségünk.
Csakhogy ez - különösen nagyobb, bonyolultabb feladatoknál
nem látható előre.
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Azt tudjuk, hogy a bázisba legfeljebb annyi változó
vonható be, ahány sor van a feladatban és a többi változó-
hoz tartozó oszlopban felesleges számitásokat végezttink
minden lépésben. Felmerül a kérdés, hogyan lehetne a feles-
leges számitásokat elkerülni? Erre a modositott szimplex
módszer alkalmazása nyújt lehetőséget.

Az előbbi feladat a hiányváltozók bevezetésével a követ-
kezőképpen Írható fel:

1xl» X2» X 3 ' X4» X5> X6« ul» "2» U3
xl + *2

2 x l + 4X2

4x^ + 2ig

X6
X6 "2

X4 +

0

9

18

16

10x1 +12x2 + 5x, + xc + = max.

írjuk fel ennek alapján az induló szimplex táblázatot!

ul
U2
U3

z

xl

2

4

LO

*2

1

ED
2

12

X3

1

2

0

5

X4

i-i

0

1

5

X5

1

2

0

6

X6

1

1

0

2

ul

1

0

0

0

U2

0

l-l

0

0

U3

1

0.

1

0

9

18

16

0

Az induló tábla szimbolikusan felirható a következők
szerint:

Hajtsuk most végre az adott példafeladaton az elaő bá-
zisoserát, azaz végezzük el az Xp ás az u, cseréjét,^de ugy,
hogy csak az E-nek az uj bázisra vonatkozó koordinátáit
számítsuk ki.~
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KK.zben az oszlopszimbólumokat meghagyhatjuk, csak a sorok
szimbólumait alakltjuk ugy_ át, hogy jelöljük az x?-nek
a bázisba történt bevonását. A következő táblázatot kapjuk:

ul
x2

U3
-z

xl X2 X3 x 4 x 5 x€ ul

1

0

0

-0

0

-0

2

,25

,25

,5

U3

0

0

1

Az E-nek az uj bázisra vonatkozó koordinátáit igen
egyszerű volt kiszámítani, hiszen mindössze egy oszlopot
kellett változtatnunk.

Jelöljük most a kapott mátrixot

D, szimbólummal.

Az előbb általánosan felirt

A E b

2. 01 0

mátrix vektorrendazerének bázisa

E 0

Ha az első bazistranszformáció esetén a

0

esetén az Up-höz tar-

bázishoz jutunk /ahol d^-t ugy kapjuk, hogy az u .transz-
formált oszlopában a JD -béli elemet beiktatjuk, vagyis a
páldafeladatban x 2 és az u 2 cseréje
tozó célfüggvény koefficiens 12 lesz, vagyis a D-̂ -hez
0 T =[o, 0, oj helyett a d^ =J0, 12, ol cálfüggványsor
tartozik/, akkor az L o oszlopvektorainak az uj bázisra

vonatkozó koordinátáit az
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adja.

tehát:

A B^-et a B^

Bí1 =

. h =

L 1 = B1

invertálasával nyerjük:

fii1

,T _-l
_-dl Dl

0

1

0

X

A

T

E b

0

si1

2. "(ál \ J A - (ál El ) - (ál S-L

•-1 T

Ha teiiát a J3-, -et és a ^-,-et meghatározzuk, megkapjuk a má-

sodik szimplex tábla valamennyi vektorának koordinátáit az

új bázisra vonatkozólag.

Példafeladatunkban

1

0

0

-0,

o,

-o,

25

25

5

0

0

1

és

d^ = [0, 12, Oj

Végezzük el az L-̂ -hez szükséges számitáaokat:
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D " 1 A =

=

1

0

0

0

0

3

,5

,5

- 0

0

- 0

0

1

0

,25

,25

,5

o,
o,

- 1

5

5

0

0

1

1

2

4

1

0

1

1

4

2

0,5

0,5
_1

1

2

0

0

0

- 0

;L

0

1

,75

,25

,5

1

2

0

1

1

o_

Ellenőrizhetjük az előbbi számítás második: táblája
alapján, hogy ugyanazon eredményhez jutottunk. /Ha a fela-
datot E mátrixszal bővítettük volna, az Xp oszlopában,

mint tudjuk |p, 1 Cj -t kapunk, az u~ oszlop pedig
az E második oszlopába kerül./

^ - 1 ismert.

1

0

0

-0,25

0,25

-0,5

0

0

U
12, 5,

9

18

J.6.

=

4,5

4,5

_7

- (±1 D-^A = [lO, 12, 5, 5, 6, £J - f [ o , 12, Ö] .

-0,25

0,25

-0,5

1

2

0

=[lO, 12, 5, 5, 6, 2] - |_0, 3, qj.

1 1 1 1 1 1

2 4 2 0 2 1

4 2 0 1 0 0

= [lO, 12, 5, 5, 6, 2j - J6, 12, 6, 0, 6, 3_| =

= R , 0, - 1 , 5, 0, - l j

d? D71 értékét az előbb már ki kellett számolnunk, azaz
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s vágül

, -12, Ö°]
Fo, -3,

1
0

0

1 -0,
0 0,

0 -0,

-0,25

0,25

-0,5

25
25
5

0

0
1

0
0

1
, 3, 0~J

= -54

Az adatokat táblázatba foglalva tehát a következőkben
kapjuk az uj táblázatot:

Ul
U2
x2

-z

X

0

0

3

4

1

,5

,5

r2

0

1

0

0

0

0

-1

-1

X3

,5

,5

X4
1

0

1

5

X

0,

0,

-i

0

5
5

5

X

0,

o,
-o,

-1

6
75

25

5

ul
1

0

0

0

-0

0

0

-3

u 2

,25

,25

,5

u?

0

0

1

0

4,

4,

7

-54

5

5

Most az x. oszlopából választunk generáló elemet, a

szokásos módon.

Ha igy folytatnánk, nem nyernénk semmit, hiszen most
is minden oszlop adatait kiszámoltuk. Ezt elkerülvén, a
következőképpen járunk el:

Az előbbi számitásokból nem végezzük el a D7 A kiszá-

mitását. Ekkor a következő táblázathoz jutunk:

u?
*2

-z

xl

4

X2 x 3 x 4 x 5 x 6

0 - 1 5 0 - 1

ul
1

0

0

0

u

-o,
o,
o,

-3

2

25
25
5

u3

0

0

1

0

4
4
7

-54

,5
,5
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A táblázatból eldönthető, hogy most az x. oszlopában
kell generáló elemet választani. Elegendő tehát csak az x.
oszlopát kiszámítani ahhoz, hogy generáló elemet választhas-
sunk. Az x. oszlopához tartozó elemeket a

formula alapján

sí1

kapjuk

24
neg,

rH

0

0

azaz

-0,25

0,25

-0,5

0

0

1

1

0

1

1

0

1

Most tehát ezt az oszlopot a táblázatba beírva, a követ-
kezőket kapjuk:

ul
U2
X2

-í

x l X2 X3 X 4

0
0

H

4 0 - 1 5

X5 X6

0 -1

ul

1

0

0

0

u

-0,

0,

0,

-3

2

25

25

5

U3

0

0

1

0

4,

4,

7

-54

5

5

Most a szokásos módon kiválasztjuk a generáló elemet.
Ennek segítségével újra elvégezzük a transzformációt és
kapjuk, hogy

tehát kiszámítjuk V^ -et
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azaz

Most aztán.

Mivel

1

0

-1

" l

0

-1

-0,25

0,25

-0,25

-0,25

0,25

-0,25

1

0

-1

0

0

1

9~
18

16

s
"4,5
4,5
2 , 5

ÍSÜ

-0,25

0,25

-0,25

= p , 1,75, Ól

-ál 22 3

= -[5, 1,75, 0]

s végül:

- Í5 , 12,

9

18

16

0

-0,25

0,25

•1 -0,25

- 76,5

0

0

1

~9~

18

16

' 6' {]

, 1,75,

5, 5

1 1 1 1 1 - 1

2 4 2 0 2 1 =

_4 2 0 1 0 0 .

= |lO, 12, 5, 5, 6, 2j - f8,5, 12, 8,5, 5, 8,5 6,75] =

= p-,5, 0, -3,5, 0, -2,5, -4.75J

o|
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Ebből máris eldönthetjük, hogy a következő lépéshez az
első oszlopban kell generáló elemet választani, hiszen itt
találjuk a célfüggvény sorában a legnagyobb pozitiv számot
/itt más pozitiv célfüggvénykoefficiens már nincs is/.

Ki kell tehát számitanunk az első oszlophoz tartozó
adatokat, azaz

— 2 — 1

Most már megszerkeszthetjük az előbb kiszámitott ada-
tokból az uj táblázatot, azaz

1

0

-1

-0,25

0,25

-0,25

0

0

1

1

2

4

S3'

0,5

0,5

2,5

U3

-z

zl X2

0,5

0,5

nm
1,5 0

x3

-3,5

x 4 x

0-2,

5 X6 °1
1

0

-1

5 -4,75 -5

u2

-0,25

0,25

-0,25

-1,75

U3
0

• 0

1

0

4,5

4,5

2,5

-76,5

Az X-, oszlopában generáló elemet választunk, 2,5-et
ég folytatjuk a számításokat.

Számítsuk ki tehát először iC -et

ul

1,2

0,2

-0,4

-0,

o,
-0,

2

2

3

1

-0,

-0,

o,

?

2

2

4

d | = f~5, 1 2 , l ö j
és mint az előzőekből következtethető

D"1 A Dt1 •Bb
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" (á.3 £3

12, lol

[lO, 12, 5, 5, 6, 2] -

1,2

0,2

0,4

-0,2

0,3

-0,1

-0,2

-0,2

0,4

1 1 1 1 1 1

2 4 2 0 2 1

4 2 0 1 0 0

-[4,4, 1,6, 0,6J

10, 12, 5, 5, 6,
' ] •

1 1 1 1 1 1
2 4 2 0 2 1
4 2 0 1 0 0

= [lO, 12, 5, 5, 6, 2J - jio, 12, 7,6, 5, 7,6,
= To, o, -2,6, o, -1,6, -TJ

már mutatja, hogy a következő táblázat célfüggvény sorában
már nem találunk pozitív elemet, tehát optimális táblázat-
hoz jutottunk.

Az optimális táblázathoz tartozó koordináták most

b =3

1,2

0,2

-0,2 -0,2

0,3 -0,2

-0,1 0,4

a célfüggvényérték

d, D~ b)

9
18

16

=

4

4
1

1,6, O.ől
9

18

16

= -78

Mivel optimális táblázathoz jutottunk, a táblázat továb-
bi részének kiszámítása szükségtelen, bár célszerű az árnyék-
árak meghatározása is, azaz

,T „-1
- * 2

amit azonban már ismerünk az előbbiből, mindössze előjelet
kell változtatni, azaz
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- Í3 - 3 1 = Í" 4' 4' " 1' 6'

A feladatot tehát megoldottuk, az optimális tábla

X4
x 2

xl

-z

xl

0

x 2

0

X?

-2,6

X4 X5

0 1,6

X6

-4

ul

-4,4

u 2

-1,6

U3

-0,6

4
4
1

-78

vagyis az optimális megoldás

X :

z = 78

Up 0J.IUci.LXa JUfcJgUJ-Uclü

, 4, 0, 4, 0, Oj

A módositott szimplex módszer alkalmazásának akkor van
nagyobb jelentősége, ha az oszlopok száma több, mint a sorok
száma. Ilyenkor lényegesen kevesebb számolás szükséges a
feladat megoldásához.

6.13. Speciális problémák

A módositott szimplex módszer alkalmazása során a DT ,

Dp , ..., D mátrixokat határoztuk meg és segitségükkel a

2B 1 Ü
alapján előállítottuk a megengedett megoldásokat, valamint

alapján a célfüggvény sorát.

Ha az s+l-edik táblázatban az optimális megoldást kapjuk,
akkor a

szorzat a prímái feladat megoldását adja és a célfüggvény
maximuma
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Tegyük fel, hogy a lineáris programozás alkalmazáséval
gyakorlatban készítünk vállalati tervet. Egyrészt a tervezés
folyamata is időt vesz igénybe és lehetséges, hogy mire a
terv elkészül, megváltoznak a feltételek. Másrészt, ha fej-
lesztési tervet készítünk, annak megvalósítása éveket vesz
igénybe. Ilyenkor különösen nagy a valószínűsége annak, hogy
változnak a feltételek. A feltételek változása egyben kétsé-
gessé teszi, hogy a lineáris programozással előállított terv
továbbra is optimális-e, célszerü-e annak megvalósítása, vagy
pedig a tervet át kell dolgozni. Legtöbbször az utóbbi áll
fenn. Át kell dolgozni a tervet.

A terv átdolgozása, mint látni fogjuk, ha lineáris prog-
ramozással terveztük, viszonylag egyszerű. Módosítjuk a mo-
dell megfelelő adatait és a feladatot újra megoldjuk. Felme-
rül azonban a kérdés, hogy szükség van-e arra, hogy a számí-
tásokat elölről kezdve végig megismételük. Látni fogjuk,
hogy a módositott szimplex módszer alkalmazásával ez elkerül-
hető.

Mielőtt az ezzel kapcsolatos számítástechnikai eljáráso-
kat megismernénk, vizsgáljuk meg, hogyan jelentkezhet a mo-
dellben a feltételek megváltozása.

Mindenekelőtt megváltozhatnak az erőforráskapacitások.
Különösen a fejlesztési tervek megvalósítása során az elői-
rányzottnál nagyobb beruházási lehetőségek adódhatnak, kor-
szerűbb, nagyobb teljesítményű gépeket szerezhetünk be, vál-
tozhat a munkaerőkapacitás, stb.

Lehetséges az is, hogy felmerül egy uj termék termelé-
sének lehetősége, és el kell dönteni, célszerű-e annak ter-
melése és ha igen, akkor milyen mennyiségben és hogyan kell
ennek érdekében a termelés szerkezetét megváltoztatni. Ilyen-
kor a modellbe uj változót kell beépíteni. Ehhez hasonló
probléma, ha valamely termék termelésére *uj termeléstechnoló-
giát dolgoznak ki és el kell dönteni, hogy a régi vagy az új
technológiát célszerű alkalmazni és ha az uj technológiát al-
kalmazzuk, hogyan kell a termelés szerkezetét megváltoztatni.

Végül lehetséges, hogy a modellbe új feltételeket kell
beépíteni. Például a megváltozott piaci /értékesítési vagy
beszerzési/ feltételeknek megfelelően korlátozni kell néhány
termék termelését, anyagfelhasználását, stb.

E változások jelentkezhetnek külön-külön és egyidejűleg
és a már elkészített terv jelentős megváltoztatását tehetik
szükségessé. Ugyanezen problémák merülnek fel tervvariánsok
kiszámításakor is.

A vállalatvezetők sokszor panaszkodnak, hogy hiába ter-
veznek, a tervet nem lehet megvalósítani, mert a gazdasági
feltételek igen gyakran változnak. Ez valóban igaz, különö-
sen a mezőgazdaságban. Oktalanság volna azonban olyan
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igénnyel fellépni, hogy a gazdasági feltételek hosszú iűó'n
keresztül ne változzanak meg. Ez a gazdasági élet megmere-
vítését, a gazdasági fejlődés megállítását jelentené, ami
- csak ezért, hogy az egyszer elkészített tervet /minden
számadatát illetőén/ teljesíteni tudjuk - aligha volna kívá-
natos.

A gazdasági élet szerencsére állandóan változik, fejlődik,
sőt mondhatjuk, gyorsuló ütemben fejlődik, és a vállalatve-
zetés feladata, hogy az állandóan változó feltételeknek
megfelelően jól működjön a vállalat. Ez pedig azzal a köve-
telménnyel jár együtt, hogy alkalmazkodni kell a változó
feltételekhez, s a tervet szükség szerint kell módosítani,
átdolgozni. Ebből következik, hogy a tervezést nem szabad
egyszeri aktusként felfogni, hanem az egy parmaneris folya-
mat, tehát a tervet állandóan a változó gazdasági feltéte-
lekhez igazodva karban kell tartani.

A következőkben megismerkedünk azokkal az eljárásokkal,
amelyek segítségével a számitások teljes megismétlése nél-
kül lehet a tervet átdolgozni, optimalizálni.

6.13.1. Tervmódosítás a kapacitásvektor /b./ változása
miatt "

Induljunk ki a 6.12.-ben megismert példából, azaz az

•I', X-i , 2 A J X-ii X J , Xrr , X/- — 03' 4» 5» 6

xl + X2 + X3 + X4

+ 2x o

+ 2x~

+ x.

£[- + Xg = 18

i 16

lOx-, x, +

Ismerjük, hogy ennek megoldása

, 4, 0, 4, 0, Öj

max.

Tegyük fel azonban, hogy időközben módosult a termelő-
kapacitás, azaz a b vektor. Mondjuk, hogy a b vektor min-
den eleme 50 %-kal~*bővült, tehát az uj b vekTFor, azaz b
a következő: f~ q~l 13 5

b' = 1,5 b = 1,5 18

16

27,0

24,0
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Kárdá3, hogy most mi volna a feladat optimális megoldá-

sa <

A 6.12.-ből már ismerjük: a DZ -et, amikor az utolsó
/optimális/ táblázathoz jutottunk.

1,2 -0,2 -0,2

0,2 0,3 -0,2

-0,4 -0,1 0,4

Azt is tudjuk, hogy

[5, 12, lő]

Az uj b rektor ismeretében most az uj optimális megol-
dást egyszerűen ki tudjuk számitani, azaz

- opt B'1*'

1,2 -0,2 -0,2

0,2 0,3 -0,2

-0,4 -0,1 0,4

13

27

24

,5

,0

,0

6

6

1, 5

Könnyű észrevenni, hogy mivel a kapacitásvektor minden
eleme 1,5-szörö'ssre változott, az uj megoldás is az előbbi-
nek 1,5-szöröse, azaz

z£ t
= 1,5 1 opt = 1,5

4"

4

1-
1

=

~6

6

1,5

Ha tehát a b vektor komponenseit k-szorosára változtat-
juk, akkor - amennyiben b-vel volt optimális megoldás - a
kb-hea tartozó optimális megoldás '

Az uj optimumhoz tartozó oálfüggvéoyérték

1,2 -0,2 -0,2

0,2 0,3 -0,2-íá.3 Rfk = -[5,12,10[
-0,4 -0,1 0a4 24,0
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242

13

27

24

,5

,0

,0

-117

ami az előbbinek azintén 1,5-szöröse, azaz 1,5 .(-78)= -117.

Ha tehát a b vektor minden eleme egyforma arányban, k-
ssorosára változik, az uj optimumot megkapjuk, ha az előbbit
k-val szorozzuk.

Más a helyzet, ha a b vektor elemei különböző arányban
változnak. /A gyakorlatban általában ez a helyzet./

Tegyük fel, hogy most a feladatban a b vektor a követ-
kezőképpen módosul:

b' = |9, 22, 18~j
Kiindulunk az ismert

X4
x2

xl

x x x 2 x 3 x 4 x 5 xg

1

0

-0

ul

,2

,2

,4

-0

0

-0

2

,2

,3

,1

u 3 .

-0,2

-0,2

0,4

táblázatból ás folytatjuk a számítást:

opt

1,2 -0,2 -0,2

0,2 0,3 —0,2

-0,4 -0,1 0,4

ás a célfüggvény értéke

9

22

18

=

2,8

4,8

1,4

1,6, O.őőj
9

22

18

-85,6
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A táblázat többi ártske nem függ a b» értékétől, tehát
a V vektorhoz tartozó uj táblázatunk a következő lesz:

X4

-z

xl X2 X3 X4 ^S

0 0-2,6 0-1,6

H

-4

ul

1,2

0,2

-0,4

-4,4

u 2

-0,2

0,3

-0,1

-1,6

U3

-0,2

-0,2

0,4

-0,6

2,8

4,8

1,4

-85,6

A megoldás struktúrája nem változott, azaz a b'-hez
tartozó megoldásban ugyanazon x_j értékek fordulnak elő,
mint a b-hez tartozó megoldásban, csupán az x. értékek
nagysága változott meg.

Ha ugyanis

I S 1 * ' >= o
akkor a megoldás struktúrája nem változik. Ha azonban

D"1 V $ 0

a megoldás struktúrája is változik.

Tegyük fel most, hogy a módosult b vektor a következő:

b' = [9, 22, 14JT

Ekkor

D3 1 b' =

Most tehát

D"1 b' 1

1.2

0,2

-0,4

0

-0,2

0,3

-0,1

-0,2

-0,2

0,4

9

22

14

=

3,6

5,6

-0,2

vagyis az x vektor komponensei között negativ is van,
tehát a azamitást folytatni kell, mégpedig a módositott
duál szimplex módszerrel.
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X4

*2

xl

-z

xl

0

TLs> "3L-.

0 -2,6

X4 X5

0 -1,6

*6 ul

1,2

0,2

-0,4

-4 -4,4

U2

-0,2

0,3

-0,1

-1,6

u3

-0,2

-0,2

0,4

-0,6

3,

5,
-0,

-83

6

6

2

,2

á3 231 i - Í4,4, 1,6, 0.6J 22

14

= -83,2

A "b vektor legkisebb komponense a -0,2 az x-, sorában,
van, ¥ehát ebben a sorban keresünk generáló elemet. A
sor elemeit megkapjuk^ ha az A mátrix új elemeit meghatározzuk,
azaz

1,2

0,2 0,3

-0,4 -0,1

-0,2 -0,2

-0,2

0,4

1 1 1 1 1 1

2 4 2 0 2 1

4 2 0 1 0 0

0

1

0

0,8

0,8

-0,6

1

0

0

0,8

0,8

-0,6

1

0,5

-0,5

Most

X4

*2

xl

-z

xl

0

0

1

0

tehát

*2

0

1

0

0

táblázatunk a következőképpen

X3

0,8

0,8

-0,6

-2,6

X4

1

0

0

0

X5

0,8

0,8

-0,6

-1,6

X6

1

0,

-0,

-4

ul

1,2

5 0,2

5-0,4

-4,4

u 2

-0,2

0,3

-0,1

-1,6

alakuls

U3

-0,2

-0,2

0,4

-0,6

3,6

5,6

-0,2

-83,2
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Generáló elemet rálasztunk:

=^ = 4,33 , d i
-0,6

=±»& = 2,67 ,
-0,6 -0,5

generáló elemünk tehát a -0,6 lesz, aa x,--höz tartozó
oszlopban. /Megjegyezzük, hogy elegendő lett Tolna az
A mátrix új elemeit csak az 1-,-hez tartozó sor és x^-höz
tartozó oszlopban meghatározni./

Folytatjuk tehát a számítást és meghatározzuk D7

mátrixot.

,-1

* 4

X o

X 5

u l

0 ,

- 0 ,

0 ,

67

33

67

u

0 ,

0 ,

0 ,

2

33

17

17

0

0

- 0

U3

,33

,33

,67

tehát

és

Innen:

0,67

-0,33

0,67

0,33

0,17

0,17

0,33

0,33

-0,67

[5, 12, 6J

—4 —4

alapján kiszámítjuk az uö megoldást, »z ahhoz tartozó
célftiggTényértáket és az uj táblázat cilfUggTány HOiáí,
azaz
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0,66

-0,33

0,66

-0,33

0,17

0,17

0

0

- 0

,33

,33

,66

9

22

14-

SS

3

5

0

,33

,33

,33

/Megjegyezzük, hogy D"1 feerekitett adatokat tartalmaz,

ezt a számítások során igyekeztünk kiszűrni./

A célfUggrényérták számítása:

12, 5, 5, 6, 2J - |5, 12, ő j .

0,66

-0,33

jO.66

-0,33

0,17

0,17

0

0

- 0

,33

,33

,66

1

2

0

-2,67, 0, -1, 0,0,-2,67]
Ebből látható, hogy a számítást befejeztük, mert a cél-
f i i é sorában nincs pozitív elem.

A célfüggvény értéke

- (áj 5 1 i) = -[5, 12, e]
0,66 -0,33 0,33

-0,33

0,66

0,17 0,33

0,16 -0,66

-82,67

9

22

14

Az utolsó szimplex táblázatunk tehát

X 4

X 5

-z -2,67

X n *̂"*3 ^A

0 - 1 0

X5 X6 u l
0,66

-0,33

0,66

0 -2,67-3,33

u2 u3

-0,33 0,33

0,17 0,33

0,17-0,66

-1,33-1,66

3,33

5,33

0,33

-82,67
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0,66 -0,33 0,33

-0,33 0,17 0,33

0,66 0,17 -0,66

-1,66]
A feladatot tehát megoldottuk. A megoldás:

x=jo, 5,33, 0, 3,33, 0,33, Ö]

z = 82,67

Ellenőrizzük:

1 1 1 1 1 1
2 4 2 1 2 1
4 2 0 1 0 0

és

0

5,33
0

3,33
0,33

0

=

8,99

21,98

13,99

O, 12, 5, 5, 6, § 82,59 ^82,67

0
5,33

0
3,33
0,33

0

Az elmondottakat felhasználhatjuk természetesen akkor
is., ha egy adott feladatot több b vektorral kell megoldani.
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6.13.2. Tervmódosítás a célfüggvény változása miatt;

Az előbbiek ismeretében már nem nehéz megoldani a fela-
datot, ha megváltozik a célfüggvény, vagy ha több célfügg-
vénnyel kell a feladatot vizsgálni.

Ha 2, vektor £' -re változik, akkor változik a d_ is,
s

és ennek következtében mindazon vektorokat át kell számolni,
m

amelyek alakításában a d_ szerepet játszik. Ezek a követke-

zők:

és
^ - (iT

s í
1) i

Hem változik a

éa az előző számításokból ismert a

Ha a célfüggvény minden adata arányosan, mondjuk k-szo-
rosára változik, akkor az ^ „ ^ nem változik meg, csak a
hozzá tartozó célfüggványérták, tehát elegendő, ha azt
k-azorosára változtatjuk. Ha tehát

akkor

T:' = x

=opt. —opt.,

vagyis az optimális megoldás nem változik ás

z' = k z.
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Ha azonban a célfüggvény komponensei különböző arányban
változnak meg, akkor a d_ által érintett vektorokat az új

célfüggvénynek megfelelően átszámítjuk. Ka aa igy nyert táb-
lázathoz tartozó célfüggvénysorban nincs pozitir elem, má-
ris optimális táblázathoz jutottunk. Ha viszont a célfügg-
vény sorában pozitiv elemet találunk, folytatni kell a szá-
mításokat a prímái szimplex módszerrel mindaddig, amig op-
timális táblázathoz jutunk.

Tegyük fel, hogy a 6.12.-ban megoldott feladat célfüggvé-
nye megváltozik, mivel az ötödik termák ára emelkedett es
igy a jövedelem 6 egységről 8 egységre emelkedett.
Host tehát a

12, 5, 5, 6,

helyett a

célfüggvénnyel

Ismeretes,

—

E t T =
kell

hogy

[10, 12,

dolgoznunk

1

0

-0

,2

,2

,4

5

•

-0

0

-0

9

,2

,3

,1

5,

-0

-0

0

8,

,2

,2

,4

12, 10ől
Snnek alapján

- 4 Ej1 = -IJ5, 12, ló]

í

-
1,2

0,2

-0,4

-0s2

0,3

-0,1

-0,2

-0,2

0,4

[4- 4,4, 1,6, 0,c

1,6,
1

9

IB

16
1 i

-78
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vagyis mivel a változás olyan terméknél következett be,
amely még nem szerepel a bázisban, ezek az eredmények az
előző táblázathoz kapást nem változtak. Ha természetesen
olyan változóhoz tartozó célfüggvényárték változik meg,
amely a bázisban van, akkor a

változása miatt a

% £3

is megváltozik.

Természetesen a

T

megváltozik akkor i s , ha a cálfiiggványkoefficiens változása
olyan termáknál!, következik be, amely nem került be a bázis-
ba, hiszen a £ változik, vagyis:

T -(áffi^á =[10, 12, 5, 5, 8, 2J-J4,4, 1,6, O.ől .

1 1 1

4 2 0

4 2 0 1 0 0
A saimnlss tábla tehát a következő:

= jj>, 0, -2,6, 0, 0,4, -4]

Z 4

*2

- 3

z 1 Sg Xj

0 0 - 2 , 6

X 4 *~5 ""ő
1

0

- 0

0 -0,4 -4 -4

u l

,2

,2

,4

,4

U 2
-0,2

0 , 3

-0,1

-1,6

u 3

-0,2

-0,2

0,4

-0,6

4

4

1

- 7 8

A táblázatból kitűnik, hogy az z,--hö3 pozitív célfiigg-
vényértá's tartozilc, tehát folytatai3 kell a számítást a
primal szimplex módszerrel. Eabez előbb as z^-höz tartozó
osslop adatait kell seghatározai, azaz
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1,2 -0,2 -0,2

0,2 0,3 -0,2

-0,4 -0,1 0,4

Vagyis kapjuk a következő táblázatot:

0,8

0,8

-0,6

X4

*2
xl

-z

xl

0

X2 x 3

0 -2,6

X4

0

0

-0

0 0

X5 X6

,8

,8

,6

,4 -4

1

0

-0

-4

ul

,2

,2

,4

,4

U2

-o,

-0,

-1,

2

3
1

6

u

~0

-0

0

-0

3

,2

,2

,4

,6

4

4
1

-78

Meghatározzuk a generáló elemet:

= 5

Mivel a hányadosok azonosak degenerációval állunk
szemben. A számításokat a primál szimplex módszerrel foly-
tatva, az alábbi megoldáshoz jutunk.

X =

z =

0, 0, 0, 5,

80

6.13.3. gerymódositás uj termék /vagy technológia/
beiktatása miatt

Vegyük ismét a 6«. 12.-ben megismert feladatot, azaz

z x, x 2, x 3, x 4 i , 5 ^ 0

xl + X2 + X3 + X 4 + S5 + ^ ' 9

& 18
4x]

10x,

Mint tudjuk, ennek msgoldása

x =|l, 4S 0, 4, 0, oJ
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és
78

az optimális megoldást szolgálható szimplex tábla pedig,
mint ismeretes, a következő volt:

X 4
x.

~ 1

-z

-*t-i JLQ 3C»j

0 0 - 2 , 6

x 4 z 5 x 6

1

0

-0

0 -1,6 -4 -4

u l

,2

,2

,4

,4

u2

-0,2

0,3

-0,1

-1,6

U 3

-0,2

-0,2

0,4

-0,6

4

4

1

-78

Tegyük fel, hogy időközben felmerült kát uj termék
termelésének lehetősége, ezért a feladatot ujabb két
változóval kell kibőviteni: y-. ás y2-vel ás igy a felaűat
az alábbira módosul:

X4 +

H + 4 yi +

2y, + 2y,

J 2 - 9

y 2 = 18

' 16

+ 5x, + 5x, + 6xr- + 2XÍ- + 7y^ + 8yo = maj
J ^ J O ± cL

Sz a feladat mátrix alakban a következőkápoen Írható
fel:

S = 2 2, = £

= max.

Az eredeti felaűat optimális táblázatát ismerjük. Ezt
most ki kell bőviteni a kát uj változóval, ás első lépés-
ben azt kell megvizsgálni, hogy a £ 2 elemei között az op-
timális táblázatban található-e posi""zitiv koefficiens,
vagyxs

2-2 "
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1,2

0,2

0,4

-0,2

0,3

-0,1

-0,2

-0,2

0,4

1

4

2

= [7, s| - [4,4, 1,6, 0.6J

8] -- 7-I ' »
Az

ezért

az y5.

7,2J = j_-5, 0,8 !
yg-höz tartozó célfüggványkoefficiens tehát pozitiv,

a számitást folytatni kell. Meg kell tehát határozni

•höz tartozó oszlop elemeit, azaz

1,2

0,2

-0,4

-0,2

0,3

-0,1

-0

-0

0

,2

,2

,4

1

1

2

=

0

0

0

,6

,1

,3
_

Ennek
össze

alapján a következő szimplex táblázat állítható

X4
x 2

*1

-z

X l X2

0 0

X3

-2,6

X4 X5 X6 *i

- -

0 -1,6 -4 -5

y2

0,6

0,1

0,3

0,8

1

0

-0

-4

ul

,2

,2

,4

,4

U2

-0,2

0,3

-0,1

-1,6

u

-0

-0

0

-0

3

,2

,2

,4

,6

4

4

1

-78

Az y„ oszlopában generáló elemet választunk:

0,6
= 6,67,

0,1
= 40,

0,3
= 3,33

-1,Tehát a 0,3 lesz a generáló elem. Most meghatározzuk D^-

majd az újabb táblázathoz tartozó célfüggvényértékeket^
megoldásvektort, stb. 83 a szánitásokat a már ismert módon
mindaddig folytatjuk, amig optimális megoldáshoz nem jutunk.
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6.13.4- íervmódositás u.j feltételek csatolásával

Uj feltételek csatolása azt jelenti, hogy az eredeti

* = a
A- z = b,

£ x = max.

feladatot bővítjük ujabb

feltételekkel.

Eddigi ismereteink alapján nem lesz neház megérteni,
hogy az eredeti feladat optimális megoldására nyert op-
timális táblázat most is felhasználható a bővitett fela-
dat megoldásához.

Most azonban a feltételek számának növekedése megnöveli
a bázis méretét és az eddigi

bázis helyett az uj bázis

B»

Ha az s-edik lépésben kaptuk az eredeti feladat optimális
megoldását, akkor az uj feladat szerinti bázis a következő:

4

0

0

1
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Ennek inverze:

- D' I)"1

- ^í1

0

h
0

0

1

Az eredeti feladat optimális táblájából tehát D"1!el-
használható és előállítható a bővitett feladat s-edik
bázisának inverze.

A bővitett tábla felirása után el tudjuk dönteni, hogy
az eredeti megoldás optimális-e, vagy folytatni kell a
számításokat. Ha a bővitett táblában a bp rektor koordiná-
tái mind pozitívak, akkor a bővitett feladat optimális
megoldása megegyezik az eredeti feladat optimális megoldásával,
tehát a számitast nem kell folytatni. Ha a bp vektor koordi-
nátái között negativ is található, folytatni kell a számi-
tast a duál szimplex módszerrel. Ugyancsak folytatni kell a
számítást, ha a csatolt feltételek között egyenlet is van,
mivel ennek teljesülni kell.

Legyen feladatunK a következő:
x l ' X 2 ' X 3 ' X 4 ' X5 0

20

30

10

0

max.

A f
szolga

ul
x3

X4
X5

-z

áladat
Ltatja

xl

-16

megoldását

-12 0

az alábbi

0 0

optimális

ul U2

1

0

0

0

'0

1

1

0

1

-8

táblázat

1

0

1

1

-9

1

0

0

1

-5

60

30

10

40

-330
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Bővítsük a feladatot az

í'elté ieleK csatolásával.

6

40

A feltételek ssámának növekedésével természetesen a
bázis méretei megnövekednek, vagyis az induló táblához
tartozó bázis

E

0

0 T

0

I 2
TO 1

0

0

1

Az s-edik lépéshez /amely az eredeti feladat megoldá-
sát szolgálja/ tartozó bázis

0 0

' D E o 0e — —2 —
0 1

Ennek inverze

IT 1

—s

D

D
—s
—s -s

A D az alapfeladat optimális táblájából ismert, aA D
s ^szorzat előállitható, igy a bővített feladat

s-edik bázisának inverze már adott. A bővitett feladatot
felirva megvizsgálhatjuk az optimalitás feltételeit.

Mivel az alapfeladat optimális táblájában a
"A

T / 'r —i T >
»~s -e ' - J
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-1
-s -

szerepelnek,

— —

-

b

*2

csupán a

b

b 2

—s -

= b, - D» D"—í —e —s

vektort kell megvizsgálni. Ha e vektornak minden eleme
pozitív, akkor a bővített feladat optimuma megegyezik az
alapfeladat optimumával. Ellenkező esetben folytatni kell
a számítást a duál szimplex módszerrel. Ugyancsak folytat-
ni kell a számítást, ha a bővítésként csatolt feltételek
között egyenlet is szerepel.

Vizsgáljuk meg tehát az előbb megadott bővített feladat
megoldását:

- D' D"1

—s —s

ul
0

0

n

z 3

1

-1

"TI

X4
0

-1

X5
-1

-1

1

0

0

0

1

1

0

1

1

0

1

1

1

0

0

1

—s — s —

6

•40

0 0 1

0 2 2

1

1

-

20

30

10
0

s:

A bővített feladathoz tartozó táblázat tehát az s-edik
lépésben a következő:



ul
X,

X4
x<>

K u 5

U6

-

xl

2

-16

X2

2

-12

X3

0

0

X4

0

0

X5

0

0

ul

1

0

0

0

0

0

0

u 2

1

1-1

0

1

0

2

-8

u 3

H

0

1

1

1

2

-9

U4

1

0

0

1

0
1

-5

U5

0

0

0

0

1

0

0

uf

0

0

0

0

0

1

0

60

30

10

40

16

40

330

Mivel a bővítményben egyenlet van, a számítást foly-
tatni kell, s az Uc sorból választunk generáló elemet,
amelynek elemeit a táblázatba beírtuk. Ezt a

T
Jy A

T - I
formulával oldottuk meg, ahol t_. a D mátrixnak azt a

J ~~s

sorát jelöli, amelyből a generáló elemet választjuk

/most az*Uc sorban/, vagyis generáló elemet választunk

és folytatjuk a számítást, s a következő lépésben opti-

mális megoldáshoz jutunk, amelyhez a következő táblázat

tartozik:

ul
X3
X4
x>5
U4
U6
-z

x x x2 x 3 x 4 x 5

-6-2 0 0 0

ul

1

0

0

0

0

0

0

U2

1

1

0

1

0

2

-8

U3

0

0

1

0

1

1

-4

U4

0

0

0

0

1

0

0

U5

-1

0

0

-1

1

-1

5

u

0

0

0

0

0

r-l

0

6

44

30

10

24

16

24

-250
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7. FEJEZET

SZIMPLEX MÓDSZERREL MEGOLDHATÓ, PARAMÉTERES, EGÉSZÉR-
TÉKŰ ES KEMLIKE7lRÍ5~lÜDELLEK

A matematikai programozási modellt általáno3 formában
a következő összevont formában fogalmazhatjuk meg:

i /£/-

= extrém

Tudjuk, hogy ha az í/x/ és <fr_. /x/ lineáris formák, ak-

kor lineáris programozással állunk szemben. A 6.fejezetben
láttuk, hogy a lineáris programozási feladat a szimplex mód-
szerek valamelyikével megoldható, ha ran a feladatnak megol-
dása.

A gazdasági gyakorlatban elsősorban a lineáris programo-
zási modellek kerülnek alkalmazásra, mivel viszonylag egysze-
rűek, könnyen kezelhetők. A linearitás feltételezése viszont
a valóság lényeges egyszerűsítéséhez vezethet, hiszen a gazda-
sági problémák legtöbbször nem lineárisak. Valójában a gaz-
dasági jelenségek ha nem is lineárisak, lineáris modellekkel
is jól vizsgálhatók, jól közelithetők és a lineáris modellek
nem okoznak jelentősebb problémákat. Sok esetben viszont a
lineáris modellek a valóság lényeges egyszerűsítését kivannak
meg, ezért kénytelenek vagyunk más megoldásokhoz folyamodni.

Ebben a fejezetben a paraméteres programozással, as e-
gészértékü programozással és a nemlineáris programozás néhány
esetével fogunk foglalkozni. Az ismertetésre kerülő modellek,
mint látni fogjuk, szintén megoldhatók szimplex módszerrel.

A mezőgazdasági mérnöknek nem lehet feladata^ hogy mate-
matikai programozási modelleket kézi számítással oldjon meg.,.
Különösen nem kerül sor arra, hogy bonyolultabb, egészértékű,,
vagy nemlineáris modelleket oldjon meg egyszerűbb eszközökkel.
Ma már elérhetők számára a nagyteljesítményű számitógépek is,
amelyekkel olcsóbban ás rövidebb iaő alatt tud nsg egyszerűbb
feladatokat is megoldani, illatra bonyolultabb, nagyobb fela-
datok megoldása ezek nélkül elképzelhetetlen.

A számítógépek programozása sem az agrárssmök feladata.
Az agrármérnökök által összeállított modellek megoldására
kész programok vannak, tfagy ha iii'en kész progran nincs, ak-
kor is célszerűbb azt"kellő gyakorlattal rendelkező programo-
zóval elkészíttetni,, hiszen a programtól nagymértékben függ^a
feladat megoldásához szükséges gépidő, ami meghatározza a gép-
költséget.
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Á modellek megválasztása, a gazdasági modell megszerkesz-
tése, a feladat aegfogaliaasásE viszont mindenképpen az ag-
rármérnök feladata kell hcg.y legyen. Ennélfogva a figyelmet
e kérdésekre kivaujuk irányítani, amihez viszont az eddig
tanultak 36 alapot nyújtanak. A számitásteohnikai kérdése-
ket tehát a továbbiakban legfeljebb csak igen röviden tár-
gyaljuk* Részletesebb tárgyalásukra a rendelkezésre álló
oktatási keretek seia adnak alkalmat. A számítástechnikai kér-
dések iránt érdeklődők számára az eddigi ismeretek alapot
adnak grra, hogy ezt szakkönyvekből elsajátítsák.

7.1. Paramétere^ lineáris programozási modellek

Paraméteresnek neveszük a&okat a lineáris modelleket, a-
melyekben az A, b vagy c 1 elemei között függvények is
szerepelnek. Ha" ezek a függFények egyváltozósak és e válto-
zók első fokuak, a modellt egyparameteres lineáris modellnek
rte'yezEük. Hasonló értelemben beszélhetünk többparaméteres
és nemlineáris modellekről.

m
Attól függően, hogy a modellben aa A, b vagy c elemei

kösött szerepelnek függrényeks a paramétered modellek három
esetét különböztetjük meg:

esete

A x = b
V

x - eztrém

látjuk tehát, hogy a primal célfüggvény elemei függvények-
kés.* vannek megadva. líint ismeretes, a primális célfüggvény
különböző köagasdasági tartalommal bírhat. Lehet célunk a jö-
veáelera Eariaalizálása, a gépfelhasználásnak, a földterület
felhassnálásának /pl. tskarsBányíerraelés programozásánál/ mi-
nimalisálása, stb. Azonban a fajlagos jövedelem változhat
as árak változásának, a termelés méretének, vagy a költség—
tényezőknek, stb. a függváísyében. Hasonlóképpen a term3lési
költség ss a barunázások, gép- és a földterület felhasználá-
sa is függ más tényezőktől, mely függvényeket megadva, para-
méteres feladathoz jutunk.
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Másrészt, ha egy feladatot adott célfüggvény mellett meg-
oldunk, felmerül a kérdés, hogy mi történik, ha a fajlagos
hatékonyságok /célfüggvény koefficiensei/ megváltoznak. Mi-
lyen változás mellett nem változik az optimális megoldás, il-
letve a célfüggvény koefficiensek milyen változása esetén kell
a megoldást /tervet, illetve programot/ módositani, uj opti-
mumot keresni. Hasonló kérdésről van szó, amikor a maximális
jövedelemre törekszünk, de tekintetbe vesszük a bizonytalan-
sági tényezőt.

Ilyen és hasonló problémák megoldására alkalmas a modell
paraméteres primal célfüggvény alkalmazása esetén.

2. Paraméteres technológiai mátrix esete

(á + A' *) £ ̂  1
rn

p_ x = extrém

Most tehát az A technológiai mátrix parametrikus. Való-
jában a fajlagos münkaerőszükséglet, a fajlagos gép- és a-
nyagszükséglet, stb. is változhat, illetve függvényként ad-
ható meg. Milyen hatása van e változásoknak, meddig /milyen
változások mellett/ marad egy optimális megoldás továbbra is
optimális? A modell ilyen problémák vizsgálatához nyújt segit-
séget.

3. Parametrikus duál célfüggvény esete

x = 0 • .

A x = b + b't

m
p_ x = extrém

Most a b vektor paraméteres /a feladat duáljában, mint
tudjuk, ez Tesz a célfüggvény/. A mezőgazdasági gyakorlatban
is például valamely tehén napi táplálóanyagszükséglete függ
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a tejhozamtól. Változik a nunkaerőkapaoitás, az öntözhető
terület, a piacon értékesíthető termékmennyiség, stb. Milyen
hatása irsn e változásoknak? As ilyen jellegű problémák a
duál célfüggvény parametrisálásáv'al vizsgálhatók.

Mi azzal az esettel, amikor as A technológiai mátrix
parametrikus, nem foglalkozunk. Ugyancsak nem foglalkozunk
a nemlineáris paraméteres modellekkel és a többparaméteres
modellekkel.

A paraméteres modelleket jellemzi, hogy általában egynél
több optimális megoldásuk van a paraméter értelmezési tario-
aánya felett. Az optimális megoldások a paraméter függvényei.

A paraméteres modellek megoldását - ha a prímái célfügg-
vény paraméteres - az alábbi lépésekben végezzük:

1. Előállítjuk a p_rimáifslaüat egy lehetséges bázismegol-
úásaTT /primál vagy duál szimplex módszerrel/.

2. Tudjuk, hogy optimális megoldáshoz akkor jutottunk,
ha a primál célfüggvény elemei nempozitivek /kivételt ké-
peznek az *4 u elemei/. Ez csak akkor teljesül ~. mivel a pri-
mál célsor elemei lineáris függvények - ha van olyan pt , t-,1

intervallum, amely felett az összes függvények nempozitivek.
Ekkor leolvasható a modell optimális megoldása:

£ A/; c£T /t/; z£ /t/s t o i t i t l

ha a ft , t-Tj intervallum része az f^Cj^l intervallum-

3. Ha az optimalitás kritériumai nem teljesülnek, akkor
ujaDb" transzformációt, vagy transzformációkat végzünk, ter-
Siésaeteseii e ~b_ vektorra e szűk keresztmetszetet véve figye-
lembe.

4^. Ha egy ít , t-, | karakterisztikus intervallumot megha-
tároztunk, már egysaerü feladat a továbbiak meghatározása.
Azt fisagáljaks hogy a t>t-^ vagy t < t Q paraméterértékek

mellett a célsor aktuális elemei köaül melyik válik pozitiv-
Vá a t lagkisebc mag'/áltostatására fmin. (t - t-,/1 .

Ennek a célelemnek osalopvektorát transzformálva, az 1.
fenntartása mellett vagy taljeseáik 2. és akkcr ujabb op-
timális Eiesjclőást nyerünk:
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*1 - * - *2 .

vagy a 3. szerint eljárva jutunk el az optimumhoz, fel-
téve, hogy a pb-,, t̂ l intervallum része az VaC\ A~| inter-
vallumnak és a' célfüggvény korlátos.1-

Az eljárást a 4.szerint ismételve folytatjuk, amig az
\J-its\ intervallum minden pontját be nem soroltuk valamely
karakterisztikus intervallumba, vsgy aeg nem állapítottuk,
hogy a feladatnak nincs optimális megoldása.

Legyen feladatunk az:

xl

(4+t )

•""I +

x l + í

+ (2+3

-3 <

X 2

íx2

t )

t

=

<

=

<

ö

13

max.

5

Elkészítjük az induló táblát:

u l

U 2

- z

x l

0
1

4+ t

x 2

1

2

2+3t

8

13

0

Az induló táblázatból a számitás csak akkor indítható,
ha a célfüggvény együtthatói között pozitív is van, tehát:

vagy 4 + t^ 0, azaz tg -4,

vagy 2 + 3t«£D, azaz t<2--<f.

Válasszunk generáló elemet az x-,-hez tartozó oszlopban
és végezzük el a transzformálást.
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u l

1

-4-t

" 2

1

-2+2t

8

5

-32-8t

vagyis az adott megoldás optimális, ha -4 = t = 1

z l
X 2

«-z

u l

2

- 1

-6+t

u2

-1

1

2-2t

3

5

-22-18t

t = 6 t = 1

vagyis az adott megolőás optimális, ha 1 = t = 6

A feladat megoldásai tehát a következők:

D, 5J ; f-22 - 18t)

-] ^ -•- ^

Ezzel a két karakteriss-iikas inter káliummal a [-3, 5]
ervallumot teljesen lefedtük.interval
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A megoldások tehát nem változnak a karakterisztikus in-
tervallumon belül. A célérték viszont egy intervallumon be-
lül lineáris függvénye t-nek. Ugyancsak egy intervallumon be»
lül is lineáris függvénye t-nek a duálpár optimális megoldá-
sa. Példánkban:

u ( l ) = [4 + t, 0}

u ^ = [6 - t, - 2 + 2 tj

Eddigi ismereteink alapján egyszerűen belátjuk azt is,
hogy az:

2. = £

A x = b + b' t

T£ x = extrém

feladat megoldását, /amikor a duál célfüggvény parametri-
kus/, duálpárjának megoldásával nyerjük, azaz:

(b+b»t) u. = min.

ami viszont maximum feladatként írható fel, azaz:

u > 0 •

(-b-Vt) u = max.

amelyet az eddig tanultak felhasználásával már meg tu-
dunk oldani.
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7.2. Egészértékű /integer/ programozás

A gazdasági jelenségek lehetnek folytonos és diszkrét
jellegűek. Az eddigiekben ismertetésre került programozási
modellekben a változókra vonatkozólag kizárólag az volt a
kikötésünk, hogy azok csak nemnegativ értéket vehetnek fel.
Ennélfogva megengedtük, hogy a változók nemnegativ tört ér-
tékeket is felvegyenek, vagyis azokat folytonos változóknak
tekintettük. A gazdasági programozás során azonban nem min-
dig engedhető meg a változók folytonos értéke, hanem gyakran
az is kívánalomként merül fel, hogy a változók csak egész ér-
téket vehetnek fel.

Gondoljunk csak arra, amikor a termelési szerkezetet és
a termelési forrásokat egyidejűleg, egymással szoros kap-
csolatban kívánjuk optimalizálni. Ilyenkor a gépszükségletet
/gépparkot/ is optimalizáljuk. Nem javasolhatjuk azonban,
hogy a vállalat valamely géptípusból például 22,35 db-ot
szerezzen be, hanem vagy 22 vagy 23 db gép beszerzését ja-
vasolhatjuk. A megoldásként kapott eredmény utólagos fel-
vagy lefelé történő kerekítése jelentősen ronthatja az ered-
ményt. Megoldhatjuk azonban a feladatot, ha eleve előirjuk,
hogy ezek a változók kizárólag egész értéket vehetnek fel.
Ilyenkor az optimumot eleve ugy állítjuk elő, hogy ennek az
előirásnak eleget teszünk.

Hasonlóképpen merülhet fel, hogy az állattenyésztési
változókra előirjuk az egészértékűséget. A korszerű állatte-
nyésztési telepek ugyanis meghatározott méretekre készülnek.
Ha ezek között választhatunk, akkor előirjuk, hogy azok va-
lamelyikét létesíthetjük, vagy nem létesíthetjük, de létesí-
tésük esetén azokat az adott méret szerint kell megépiteni.
Ilyenkor általában a változó értéke csak 0 vagy 1 lehet, az-
az o - 1 értékű változóról van szó.

Ha a modellben szereplő valamennyi változóra előirjuk az
egészértékűséget, akkor tiszta esetről, vagyis tiszta
diszkrét feladatról beszélünk, ha viszont csata változók
egy része egészértékű, akkor a feladatot vegyes feladatnak,
vagy vegyes egészértékű feladatnak nevezzük.

A tiszta diszkrét feladatot: ' '

max. lg_ £.|2.€'^-n>A21
=fe

farmában, a vegyes egéssértékü feladatot pedig a:

max. I ^i i + 2,2 I £ ^ E n » 21 € 3^ , Ai 5. + A2 £ =

1 1 2 y
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általános formában írhatjuk le. /Természetesen max. he-
lyett min. is szerepelhet, ha minimumfeladatról van szó,
ill. mint tudjuk, a minimumfelaöat átálakitható maximumfela-
dattá. /

Az első esetben a lehetséges megoldások halmazát /I/ az
n dimenziós euklideszi tér nem negatív rácspontjaiból konst-
ruált y vektorok adják, azaz azok a pontok, amelyekhez a
változók egész értékű koordinátái tartoznak és természetesen
kielégitik az A x f b feltételeket és a célfüggvényre
vonatkozó előírásunkat, as alábbi ábra szerint:

Egészértékű megoldások

/rácspontok/ 17. ábra

Az ábrán megfigyelhetjük, hogy P a folytonos modell
optimális megoldása, nem optimális megoldása viszont az e-
gészértékü modellnek, mert nem rácspont, ssas a P ponthoz
a változók nem egész-értéke tartozik. Olyan megolűást kell
tehát keresnünk,, amelyben a változók egészértékűsége telje-
sül, de természetesen a lehetséges legnagyobb /maximum/ cél-
függvényérték mellett.

A második esetben vegyes egészértékű feladatról van szó.
Most a lehetséges megoldások L halmazát az n^ dimenziós

euklideszi tér ascu nea-negativ x vektoraiból, és az n~

dimenziós euklideszi tér azon nem-negativ y rácspontjaiból
konstruált . /x, y_/ vektorpárok alkotjak, amelyek kielégitik
az A /x, y_/ s" b_ relációkat. Ezen az L halmazon keressük a
maximumát az 'adott f /x, y_/ célfüggvénynek, amelyről fel-
tessaük, hogy korlátos az L felett.
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Az egészértékű feladatot negfogalmazhatjuk egyszerűen
ugy is, hogy azs

A x = b
T • .

p_ x = max.
feladatot adjuk meg, de előírjuk, hogy az x vektor egész-

értékű koordinátáira kell a feladatot megoldani. Az x. vál-
tcsók egészértékűségét fs.} szimbólummal jelöljük. /Hasonló
31-telemben járunk el vegyes feladat esetén, amikor a változók-
nak egy részére írjuk elő az egészértékűséget. A továbbiak-
ban általában csak a tiszta esettel foglalkozunk, hiszen en-
nek ismeretében a vegyes feladat is megoldható./

Hogyan oldjuk meg a feladatot? A megoldás többféle mód-
szerrel is lehetséges. Arra nincs lehetőségünk, hogy valameny-
nyi módszerrel részletesebben foglalkozzunk.

Ha az előbbi ábrát tekintjük, látjuk, hogy a folytonos
megoldás optimuma /P/ nem rácspont. A halmazt szűkíteni kell.
Ezt ugy végezzük, hogy alkalmas módon megválasztott uj kor-
látozó feltételek bevezetésével az eredeti halmazból lemetszünk
92? bisonyos részt. E metszéseket mindaddig folytatjuk, amig
egészértékű megoldáshoz nem jutunk. Ezt az eljárást metszési
módszernek nevezik, amelyet Gomory dolgozott ki.

A feladatot gyakorlatilag ugy oldjuk meg, hogy az egész-
értékű megoldás érdekében a feladathoz egy segédfüggvényt
csatolunk, azaz:

9z = S^Xj - [z^j • (j = 1, 2, ...,n)

és az optimális megoldást az f2--;"! értékekre a:
az = S i';:. - íxA) •- ~ino

feltételes szélső értékkel keressük.

A feladat megoldását szimplex módszerrel a Gomory által
kidolgozott eljárás szerint egy egyszerű példán keresztül
mutatjuk be.

Legyen feladatunk a köreticező: /l. következő oldalon/

Tudjuk, hogy £x.f| az z- változó egészértékét jelöli.

/A megoldásra a Gomorg-féle eljárást fogjuk alkalmazni, e-
lőtte aaonban néhány £cgalsaat kell megismernünk. /
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x=0 és jxH

2x4 = 16

3x. = 20

x 4 = 8

3x, + Xg + Xn + 5x, = max.

Egészrész függvény /entier-fü^gvény/ /ejtsd: antyie-
függvény/. Valamely valós szám egész részén azt az £a] szim-
bólummal jelölt /antyie "a"/ maximális nagyságú számot ért-
jük, amely eleget tesz az:

[a] = a kikötésnek is.

P l :

E = 5 .
L-4] = -4

[0,2] = 0
[-0,2] =-1
[4/3J = 1 -

[-4/3] = -2

Az "a" valós szám tört részén az:

a - [a]

kifejezés által definiált számot értjük.

Ha az igy nyert tört részt "t"-vel jelöljük, erre nézve
az adott definioió alapján feltétlenül teljesül a:

0 = t ̂ 1 reláció.

Most bevezetjük a Gomory-féle metszet fogalmát. Az adott:

egyenlőtlenséghez rendelt Gomory-féle metszeten a:
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t 2 >• • •, t nem—
a együtthatók tört része-

egyenlőtlenséget értjük, amelyekben a
negatív skalárok, az a-,, ap> .
it (a - [a]) jelentik, a t pedig a b tört részét (b - ftjj)

Oldjuk meg tehát az előbbi feladatot:

A feladatot első lépésben /szokás mondani I. interációnak
is/ megoldjuk folytonos modellként, a következők szerint:

ul
U2

U3

-z

xl

1

0

1

3

x2

0

2

0

1

X3

0

-1

4

1

X4

2

0
1

5

16

20

8

0

ul
X4
U3

-z

xl

-1

0

0
3

X2

-4/3

2/3

-2/3

-7/3

x 3

-2/3

-1/3

13/3

8/3

u 2

-2/3

1/3

-1/3

-5/3

8/3

20/3

4/3

-100/3

ul

x4

xl

-z

U3

-1

0

1

-3

X2

-2/3

2/3

-2/3

-1/3

X3

-11/3

-1/3

13/3

-31/3

u 2

-1/3

1/3

-1/3

-2/3

4/3

20/3

4/3

- 3 7 ^
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Amennyiben most x,-nek nem kellene egészértékűnek lenni,
megkaptuk volna az optimális megoldást, ugyancsak optimá-
lis lenne a megoldásunk, ha minden x. érték egészértékű vol-
na. Mivel azonban x, és x, nem J egészértékű, folytat-
ni kell a számolást.

Tekintsük először az x-, változót.

Képezzük az x^-hez rendelt Gomory-féle feltételt az utol-

só szimplex táblázat x-^hez tartozó sorából, azaz:

azaz az x-^ sorban lévő együtthatók és egészértékeik közötti

különbségnek a hozzájuk tartozó változókkal alkotott szorza-
tát képezzük, majd ezek összegét, és azt keressük, hogy e se-
gédcélfüggvény értéke ne haladja meg az x. - fx/j értékeket.

/Vagyis tulajdonképpen a z' = £(x. - [xj) = min. feltételes
szélső értékkel keressük az optimális megoldást./

így tehát kapjuk, hogy:

3

> /4 , \

~ \1 " I '
vagyis:

• • 0 • Uj + t Xg + J X, + | Ug = |

ezt -1-gyel beszorozva, a reláció iránya megváltoztatható,
tehát:

Az utolsó szimplex táblázatban iktassunk be egy sort, -

jelöljük ezt f^-gyel /kszi/. •Tehát:



ul
X4
xl

6l

-z

U3
T

0

1

0

-3

S2

-2/3

2/3

-2/3

-1/3

X3

-11/3

-1/3

13/3

-1/3

-31/3

U2

-1/3

1/3

-1/3

-2/3

-2/3

b

4/3

20/3

4/3

-1/3

-37^

A duel szimplex módszerrel számolunk tovább. Következő
táblázatunk:

ul
X4
xl
x 2

-z

U3

-1

0

1

0

-3

§1

-2

2

—2

-3

x 3

-3

i-l

5

1

-10

X2

1

-1

1

o

0

b

2

6

2

1

-37

Tehát optimális táblázathoz jutottunk, a feladatot megol-
dottuk. A megoldás a táblázatból leolvasható. Látjuk, hogy
a változókra egészértékű megoldást nyertünk.

Természetesen a Gomory-féle eljárást mindiaddig folytat-
juk, ameddig as egészértékűség feltétele nem teljesül /ha
van egyáltalán megoldás/.

Megjegyzés

A probléma bonyolultabb vegyes feladat esetén.
Általában a duális szimplex módszert célszerű alkalmazni,
A Gomory-féle metszési módszer gyakorlati alkalmazásánál

számítástechnikai nehézségek léphetnek fel, a nagyméretű fel-
adatok megoldásánál kerekítési hibák miatt igen megbízhatat-
lan eredményre vezethet. Ezért az .utóbbi időkben előtérbe ke-
rültek a kombinatorikus módszerek. Eleknél döntő szerepet ját-
szanak bizonyos kombinatorikus megfontolások.
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Néhány szót a kombinatorikus módszerekről

Előnyük

a./ Nemcsak lineáris tipusu feladatok megoldására alkal-
masak, hanem egyéb, nemfolytonos problémák megoldására is.

b./ Kerekítési hibákra nem reagálnak olyan érzékenyen,
mint a metszési módszer.

c./ A kombinatorikus módszerek előnyei leginkább a 0 •- 1
értékű változókkal való számolásnál domborodnak ki. Ez nem
jjelent lényeges megszoritást, hiszen bármely diszkrét válto-
zó vizsgálata visszavezethető 0 - 1 értékű változókra, pl.
géptechnológia 1, 2, 3, 4, stb. változatban, illetve a válto-
zók száma csökkenthető, ha azt a bináris számrendszerben ir-
juk fel. ^ •

Legyen feladat a következő /hátizsák probléma/

Egy gyalogtúrázó n különböző tárgyból kivánja felszerelé-
sét kiválasztani, ugy, hogy a lehető legnagyobb értéket vi-
hesse magával. Korlátozó feltétel csupán az összsúly / amit
képes elvinni/.

A tárgyak nem darabolhatok.
Feladat:

Yx, y 2. y3i y 4. y 5. ^ o y^ = [y^]

súly 163^ + 15y2 + 13y3 + 9y 4 + 5y5 = 25 kg • •

Érték 2oy1 + 15y 2 + 8^3 + lö?/ + 8y_ — f max.

A feladat értelmében /lexikograf ikijg sorrendben felirva/
az alábbi lehetőségek aáódnak /az ötféle változó Iröaiil melyik
szerepel vagy nem szerepel a csomagban/:

[űQQűű] (O) [IOOOO] (20)

[OQOQlJ (8) [iOQOli (28)

[ÓQOlo] (lO) ÜOQlQl (30)

[OOOII] (18) D-OOll]

[PQIOO] Í8) [lOlOo]

• jpoioi] (16) [10101J
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LQQlldf

[ooiiü

[Ö1QOÖS

{ÖlQOXl

[oioioj

föiioqj
[öiioiS

(omol
föiii:Q

(18)

Í15)

(23)

(25)

[1O11Q1

[íonij
jliooo]
[llOOJj
[iioio]

[IiioqJ
[moi]

[llllQ]

[llllíl
Az elfogadható megoldásokat /amelyek a sulykorlátnak ele-

get tesznek/ aláhúztuk, s kiszámítottuk és mellé irtuk a hoz-
zá tartozó célfüggvény értékeket.

Tehát

Összesen 32 féle megoldás közül 13 féle megoldást talál-
tunk, amely a feltételeknek /sulykorlátnak/ eleget tesz.

A legnagyobb célfüggvény értek 3o az 1,0,0,1,0 vektornál
található, tehát az első és negyedik tárgyat célszerű a
hátizsákba pakolni, igy a suiy 16+9 = 25 kg és az elszál-
lítható érték 20+10 = 30.

Ez az eljárás azonban a gyakorlatban nem alkalmazható. U-
gyanis, ha a változók száma 50 /a ez 0 - 1 értékű feladatok-
nál nem is nagy feladat/s as összes lehetőségek száma IQ^

ami már igei nagy szára. Ha egy nagyteljesítményű számolóberen-
dezás másodpercenként 1000 megoldást tudna számbavenni, akkor
is több, mint 25000 évig tartana a vizsgálat.

Ezért közvetett leszámlázást szoktak alkalmazni. Itt a lexi-
koffrafikU8~eTjárás helyetT egy irányított gráf, pontosabban
egy irányított fa segítségével végezzük el a rendezést. Ez
lehetővé tesz alkalmas kitérőket, leágaztatásokat.

A módszer továbbfejlesztéseként tekinthető a szétválasztás
és korlátozás módszere. /Ezeket Krekó B. Optimumszárnitás c.
könyvében 7líözg. és Jogi Könyvkiadó, 1972./ az érdeklődők
megtalálják./
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Vegyes feladatok megoldhatók íjarticionálással is, amely-
ről a fenti könyvtől szintén tájékozódhatunk.

Gyakorlati számítások során, ha vegyes feladattal állunk
szemben, és az egészértékű változók száma nem nagy, vaj;y
tiszta egészértékű feladatnál nem nagyszámú változó eseten
alkalmazható a következő megoldás:

a./ Megoldjuk a feladatot folytonos problémaként.

b./ A kapott eredmény környékén egészértékű megoldáasoro-
zatot számolunk. Ilyenkor a változók egészértékűségét egyen-
letekkel irjuk elő a folytonos megoldás környékén. Ezt az el-
járást általában akkor célszerű alkalmazni, ha az adott szá-
mitógéphez egészértékű megoldó programmal még nem rendelke-
zünk.

7.3. Nemlineáris programozás

Eddigi vizsgálataink során mind a feltételeket, mind pedig
a célfüggvényt lineáris formában adtuk meg, vagyis azzal a
feltételezéssel éltünk, hogy mind a feltételek, mind a célfügg-
vény a változók lineáris függvénye. A lineáris kapcsolatok
feltételezése viszont már önmagában is a valóságos gazdasági
problémák leegyszerűsítését jelenti. A gazdasági problémák
általában sokkal bonyolultabbak és gyakran nem tudjuk azokat
lineáris modellel jellemezni.

Gondoljunk csak egyes termékek árának alakulására. A pri-
mőr zöldségfélék ára kezdetben, - amikor még azokból kevés'
található a piacon - igen magas, majd később - ahogyan a pia-
ci kinálat növekszik - egyre csökken. A paradicsom ára kez-
detben - amikor még csak üvegházi paradicsom található a pia-
con - 18o-2oo Ft is lehet kg-onként, majd az árak állandó
csökkenése tapasztalható /esetenként lehetséges természetesen
hullámzás is/, s végül lo-2o Ft-ra is lecsökken, függően a
terméstől. Később - szezon végén - ujabb emelkedés tapasztal-
ható. Ha pl. a paradicsom - vagy hasonló termékek - évi áru-
termelését és átlagárát összehasonlítanánk, azt tapasztal-
nánk, hogy az átlagár nagymértékben függ a termelt mennyiség-
től; amikor kevesebb terem, akkor drágább, bővebb termés ese-
tén olcsóbb. Az éveket a termésmennyiség szerint sorba rendez-
ve, tendenciájában az alábbi összefüggést figyelhetnénk meg
/l8. ábra/. /lásd következő oldalon./

Az egységár /vagy átlagár/ csökkenése következtében nyil-
vánvaló, hogy a paradicsomtermelésből eredő árbevétel sem a-
rányos a termeléssel, vagyis a termésmennyiség és az árbevé-
tel között nem lineáris a kapcsolat, hanem csökkenő, úgyneve-
zett degresszív összefüggés a jellemző, amit a 19. ábra szem-
léltet.
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átlagár

termes

Az áralakulás lehetséges tendenciája

18. ábra

árbevétel

termelés

Az árbevétel lehetséges tendenciája

19. ábra

De a termelési költségek sem arányosan változnak a ter-
melt termékmennyiséggel. Például amíg nem szükséges uj be-
ruházás, addig a termelés mennyiségének növekedésével a ter-
mésnövekmény költsége csökkenő, ezért az összes költség növe-
kedése lassúbb ütemű a termelés növekedésénél, azaz ilyenkor
köliségdegresszióval találkozunk, a 20. ábra szerint. /Lásd
következő oldalon./
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Költségdegresszió

20. ábra

termelés

Előfordulhat ennek az ellenkezője is. Ha például az ex-
port növelésére törekszünk - éppen a kinálat növekedésének
hatásaként előálló árcsökkenés miatt - a devizaszerzés nö-
vekedése a hazai ráfordítás gyorsuló növekedését igényli a
21. ábra szerint:

Hazai /
ráfor-
ditások

deviza-
forgalom

Növekvő költségek

21. ábra

Nem nehéz belátni, hogy az árbevétel és a költségfügg-
vény, valamint más tényezők hatásaként a termelés és a jö-
vedelem között sem lineáris a kapcsolat. De a munkaerőfel-
használás, a gépfelhasználás és az anyagfelhasználás sem
arányos a termelés volumenével.
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A gazdasági vizsgálatok során tehát általában nemlineá-
ris összefüggésekkel állunk szemben.

Ha a matematikai programozást az:

$ x /%/ é 0

p 2 /x/ é o
f /x/ = max.

Y. m —'

általános formában fogalmazzuk meg, ez a felirásmód már
nem jelent semmi megszorítást. Mivel nem adtuk meg a konkrét
függvényt, csak a függvénykapcsolatot jeleztük, ez a modell
éppúgy jelenthet lineáris programozási modellt, mint vala-
milyen nemlineáris programozási modellt.

Mielőtt néhány nemlineáris programozási feladatot konkré-
ten megismerünk, az előbbiek ellenére is ceTszerü kiemelni
a lineáris programozás jelentőségét a következők miatt:

a./ Elméletileg a lineáris programozás van leginkább ki-
dolgozva.

b./ A különféle nemlineáris programozási feladatok megol-
dására kidolgozott módszerek legtöbbje valamilyen formában
szintén a lineáris programozást használja.

c./ Elméleti kidolgozása és egyszerű kezelhetősége miatt
a gyakorlatban leginkább a lineáris programozás kerül alkal-
mazásra.

7.3.1. Konvex és konkáv programozás

Emlékeszünk, hogy a 2.2.10 pontban a vektorok és mátrixok
lineáris kombinációival kapcsolatban azt mondottuk, hogy ha
a skalárszorzók összege egy, akkor konvex lineáris kombiná-
cióról beszélünk.

Az x- € E és x o 6 E pontok által meghatározott szaka-

szón tehát azt az /x,, Xg/ szimbólummal jelölt szakaszt

értjük, amely tartalmazza az x-, és az Xp összes konvex line-

áris kombinációit. Ezt szimbolikusan a következőképpen

Írhatjuk fel:
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= { í =

= 0, k-, + k, = lj .

Egy f /x/ függvényt konvexnek nevezünk, ha tetszőleges
és x esi"tén:x, és x„ esetén:

teljesül.

Ez egydimenziós függvény esetén azt jelenti, nogy a függ-
vénynek megfelelő görbe két tetszőleges pontját összekötő e-
gyenes szakasz .minden felező pontja a görbe felett van, mint
ezt a 22. ábra szemlélteti.

Konvex függvény

22. ábra

Természetesen ugyanez igaz a két tetszőleges pontot ösz-
szekötő teljes szakaszra is /ami az ábrából is látható/.

Ha a függvény bármely két pontját véve fel, mindig a:

f /xx + x 2 / f /xx/ + f /x 2/
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szigorú egyenlőtlenség érvényesül, szigorúan konvex függ-
vényről beszélünk. Ugyanakkor a 23. ábrán látható szakaszon-
ként lineáris függvény konvex, de nem szigorúan konvex, ni- "
szén a függvényen olyan pontok is felvehetők, ahol a:

x2/ f /x-j/ + f /x 2/

Szakaszonként lineáris függvény

23. ábra

Egy függvény /szigorúan/ konkáv, ha negativjja /szigorúan/
konvex. A lineáris függvény egyszerre konvex és konkáv.

Az *i /x/ = .0 feltételekben szereplő */x/ függvényekről
konvex, vi"gy konkáv programozási feladat esetében feltételez-
zük, hogy konvex függvények. Ez a feltevés biztositja, hogy
a lehetséges programok K halmaza konvex halmaz. Ez elsősor-
ban a matematikai kezelhetőség érdekében fontos, de gyakorla-
ti szempontból nem jelent megszoritást. Ha az *i/x/ függvények
lineárisak, abban az esetben a lehetséges programok halmaza
konvex polihedrikus halmaz. ami kétváltozós esetben sokszöget
jelent.

A 24-26. ábrák a korlátos, a nemkqrlátos konvex, valamint
a nemkonvex halmazokra mutatnak be peldat. /Lásd következő ol-
dalon./

A lehetséges programok halmazának konvexitására vonatkozó
állitás könnyen belátható. Ha ugyanis x-̂  és Xg-re:
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Korlátos konvex halmaz
24. ábra

Kern korlátos konvex halmaz
25. ábra

Nemkonvex halmaz

26. ábra



2 8 2

= °» • 2^-1 / = ° * nZ-l^ ° 0 ) é s a

2 /x 2 / £ 0, $ 2 /x 2 / S o <(> m /x2 / = 0 teljesül,akkor:

Si + £2

2

függvények

/xx + x2í

1 2

re az $,, 4>2>--'» • n

konvexitása folytán:

$i'—1' "** ̂  i "2^ •<

2

1

0 + 0

2
$. 3 = = 0, vagyis az

is lehetséges program.

Konvex programozási feladatban az f/x/ célfüggvény konvex.
vagyis feladat a konvex függvény maximalizálása, amivel viszont
egyenértékű a konkáv függvény minimalizálása. Hasonlóképpen
konkáv feladatban konkáv célfüggvényt maximalizálunk, vagy ez-
zel egyenértékű a konvex célfüggvény minimalizálása.

Amikor lineáris programozási feladatot szimplex módszerrel
oldunk meg, ugy járunk el, hogy a feltételek által meghatáro_
zott konvex poliéder szomszédos csúcspontjain haladunk végig
olymódon, hogy mindig a célfüggvény szempontjából jobb, szomszé-
dos csúcsot keressük. Ha ilyet már nem találunk, az adott csúcs-
ponthoz tartozó program optimális program. /A lehetséges prog-
ramok között nem találunk olyat, amely a kérdéses programnál
jobb volna a célfüggvény szempontjábál./ Az optimum tehát li-
neáris programozás esetén mindig csúcspontban van, mégpedig
olyan csúcspontban, amelynél a szomszédos csúcspontok a cél-
függvény szempontjából nem jobbak. Ebben az esetben tehát az
a program, amely környezetéhez képest optimális /lokális opti-
mum/, az összes lehetséges programok között is optimális /glo-
bális optimum/. Elegendő volt tehát az optimum keresése során
a poliéder határán maradni.

Általános esetben konvex halmazoknál csúcspont helyett ext-
^i pontokat vizsgálunk. A konvex halmaz extremális pont-

ük l t t l b l ő t i t l
p^^ p a gá p
ján ertjük az olyan pontot, amely nem belső pont.ia egyetlen.
a halmaz pontjaiból álló szakasznak sem.Ilyenek a konvex
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sokszög csúcspontjai, a kör kerületi pontjai, stb.

Eg? adott kovex halmaz tetszőleges pontja előállítható
extremális pontjainak konvex lineáris kombinációjaként. E sze-
rint egy tetszőleges x ponthoz felvehetők olyan x., x 2,...,
x extremális pontok es nemnegativ k-,, ko,-.», k~ /k"?+k9+. ..
"^kp= 1/ skalárok, hogy: ^ d p x lL

teljesüljön. Például a24.ábrán.

- = 2" -1 + 2" ̂ 2

Egyszerűen lehet bizonyítani azt is,hogy a konvex f/x/ cél-
függvény esetén az optimum extremális pontban is elérheío. Ha
ugyanis x optimális program, x^, x 2, ..., £_ a lehetséges

programok konvex halmazának extremális pontjai és k-,, kp,.. Jc
nemnegativ skalárok. akkor: *

k^ + k 2 + ... + k = 1 . . • " •

és a konvexitás definíciójából adódik, hogy:

f/x/ = í/kjX^ + k 2x 2 +...+ k x / = k1f/x1/+k2f/x2/+...+k t/x_/

azaz nemcsak a görbe két tetszőleges pontja által meghatáro-
zott szakasz, hanem a görbe tetszőleges pontjai által meghatá-
rozott sokszög is teljes egészében a görbe felett fekszik.

Ha viszont az x-̂ , Xg,..., x extremális pontoknak megfele-
lő célfüggvényértékek kisebbek lennének, mint f/x/, vagyis f/6q/

<f/x / f/x2/ < f/x/,..., f/x/ < f/x/, akkor az~előbbi egyen-
lőtlenségből következne,hogy:

f/x/<k1f/x1/+k2f/x2/+... +k

+kpf/x/ = f/x/

ami ellentmondás.
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Hasonló okoskodással lehet 'belátni, hogy konkáv célfügg-
vény esetén a lokális op-fcimumot szolgáltató program egyszer-
smind globális optimum is /és szogoruan konkáv célfüggvény
esetén csak egy optimális program létezik /.

A 27. ábrán K konvex sokszög adja a lehetséges progra-
mok halmazát, s keressük az f/x/ konvex függvény maximumát
adó programot. A célfüggvény niyovonalait megrajzolva, lát-
juk, hogy az A pontban egy lokális optimummal rendelkezünk,
/a lokális optimum nem feltétlenül jelent globális optimu-
mot/, azonban a globális optimumot a B pontban találjuk
/27. ábra/.

4

f/x/ = P 3

f/x/ = P 2

f/x/ = P,

/P 1<P 2<P 3<P 4/

Konvex programozás

27. ábra

A 28. és 2 9. ábra a konkáv maximalizálás két esetét
mutatja be. Egyik esetben a célfüggvény abszolút maximu-
mát /ha semmilyen korlátozó feltétel nem volna/ a lehet-
séges programok halmazán kivül találjuk. Ekkor az optimum
a lehetséges programokat tartalmazó konvex sokszög határán
van, ha nem is feltétlenül csúcspontban. A másik esetben
a célfüggvény abszolút maximumát belső pontban találjuk.
Ilyenkor az optimum is belső pontban van.

A gyakorlatban általában lineáris feltételek mellett
konvex célfüggvény maximalizálására, vagy konkév célfügg-
vény minimalizálására kerül sor.
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t/x/ - P,

/P1<P2<P3 /

Konkár programozás

28. ábra

Konkáv programozás

29. ábra
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Ilyen feladatok megoldásának egzakt módszere, amikor
meghatározzuk a lineáris feltételek által meghatározott kon-
vex poliéder összes csúcspontjait, majd kiszámitva az ezek-
hez tartozó célfüggvényértékeket, kiválasztjuk azt a csúcs-
pontot, amelyhez a legnagyobb céífüggvényérték tartozik. Ez
lesz az optimális program. Mivel azonban viszonylag kevés
feltétel mellett is nagyon sok a csúcspontok száma, ez az
eljárás nehézkes.

A gyakorlatban inkább azt az eljárást követik, hogy vé-
letlenszerűen választanak egy csúcspontot. Az ehhez tarto-
zó szimplex táblázat alapján transzformációkat végeznek
/hasonlóan, mint a lineáris programozásnál, áttérés szomszé-
dos csúcsra/, mindaddig, amig a célfüggvény értéke javit-
ható. így egy lokális optimumhoz jutunk. Ezt a folyamatot
többször megismételve, a kapott lokális optimumok közül ki-
választjuk a legjobbat, s ezt a programot optimálisnak fo*
gadjuk el. Hogy a folyamatot hányszor ismételjük meg, az
függ a feltételek és a változók számától.

A konkáv maximalizálási feladatra kidolgozott általá-
nos módszerek általában közelitő módszerek. /Kivéve a kvad-
ratikus célfüggvény esetét, amelyre véges eljárások is van-
nak./ E módszerek egy részénél egy lehetséges programból
indulunk ki, majd keresünk egy olyan irányt, amely mentén
haladva a program javitható, azaz a célfüggvény értéke nö-
velhető. Egy ilyen irány mentén addig a pontig megyünk, a-
meddig a célfüggvény értéke növekszik, vagy amelyen tul el-
hagynánk a lehetséges programok halmazát.
Ebből a pontból ismét keresünk egy olyan irányt, amely irány-
ban haladva a célfüggvény növelhető. Ezt addig folytatjuk,
amig találunk olyan irányt, amely mentén a célfüggvény érté-
ke növelhető. Ha ilyen nincs, az adott pont optimális megol-
dás. A továbbhaladás irányának meghatározása vagy egy line-
áris programozási feladat megoldását igényli, vagy alkalmas .
szimplex táblából olvasható le. A módszert a hatékony irá-
nyok módszerének nevezik. Szemléltetését a 30. ábrán mutat-
juk be. /Lásd következő oldalon./

7.3-2. Konvex és konkáv programozási feladatok megoldá-
sa szakaszonként linearizált modellel

Olyan programozási feladatok esetén, amikor a feltételek
lineárisak, de a célfüggvény konvex, vagy konkáv, egyszerű-
en tudunk közelítően kielégítő megoldást nyerni a következő
eljárással:

Helyettesítsük az f./x../ konvex /vagy konkáv/ függvényt

egy hur poligonjával. E poligon minden szakaszához bevezetünk
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Hatékony irányok módszere

30. ábra

egy-egy uj változót, amikoris az f., függvény a követke-

"í kjl' aií0^- mjl = E—*^^" " t g °^1»

ző formát nyeri:

-̂.x.-,, ha 0

i
mjl l ljl + m32 xi2' h a

ha a1k-l = xi flik»

Szemléletesen mutatja ezt a 31. ábra. /Lásd következő
oldalon./

Természetesen:
< < <

ról konvex függvény/ és

m3l " má2 " ••• = mjk' h a f j y

ről konvex/.

függvény /alul-

konkáv fGggréay /felül-
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Szakaazönként1 linearizált konvex függvény

31. ábra

Az:

n

3=1
f /x./ extrém

feladatban most az x. változó az t , + x.,p + ... i 1 ) t sza-
kaszváltozók összegével"1 helyettesíthető az"1 f^/x./ " cél-
függvény pedig az m ^ x ^ + ni.gX^ + ... + m^x.^. összeggel,
hiszen ha az x. változó bekerül az optimális programba, akkor
ry rf^ rfw* ír ^ ^ Vt «̂  «-*1^1^A *w* ^ ^ ^r » d-k yvw X̂  ^ ^ V 2. \ \ r-t d-k l^ir-A-viivagy = hái'

h., + x.2,

l i l l e t V e

s akkor x. = x.,, vagy h..-, a i. = h-o, s akkor

és igy tovább, s ekkor a célfüggvény értéke

A feladat igy lineáris programozási feladattá alakul át,
amelyet a szimplex módszer valamelyikével meg tudunk oldani,
s ezáltal az eredeti feladat egy közelitő megoldását kapáyk.

Példaként tekintsünk két egyszerű feladatot:

Legyen feladatunk az: .
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3x2 - 21

4x2 £ 40

min.

Vizsgáljuk meg először a feladat értelmezési tartományát.
A 2x 1 + 4x 2 = 40 feltételből következik, hogy ha x 2 " °>
kkor x, "= 20 és ha x-̂  = í

= x x 5 20 és 0 = x 2 = 10.

Az értelmezési tartományokat bontsuk fel 3, illetve 2 sza-
kaszra a következők szerint:

X12 "13
K21

14 21 10
2 2

A 3x, és az x 2 + 2x2 konvex függvények, amelyek meredek-

sége az X-, és x 2 résztartoményaiban a következő:

14 21

147 588 1323

21 63 105

f/x2/

10

35 120

17

Most a feladat közelitő megoldásához a következő lineáris
programozási feladatot adhatjuk meg:

S12» TL3'

2x.11

3x
2 1

4x
2 1

3x
2 2

4x 2 2

= 7 i = 1,2,3; x 2 i i 5,

0

21

40

1,2

17x
2 2

min.
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A feladatot szimplex módszerrel most már meg tudjuk ol-
dani, hiszen lineáris programozási feladattal állunk szemben.
Nyilvánvaló, hogy a megoldást:

xl = xll + X12 + X13

Xp = xpl + X22 adja.

Hasonlóképpen járunk el konkáv feladat megoldása során is.
Természetesen a szakaszoknak nem kell feltétlenül azonosaknak
lenniük.

Megjegyezzük, hogy mezőgazdasági feladatok során a válto-
zóknak szakaszváltozókra történő felbontását gyakran célszerű
alkalmazni. Ilyenkor nem is mindig egy ismert nemlineáris cél-
függvényből indulunk ki, hiszen azt sokszor nem is ismerjük.
A felbontás lényege és eredménye azonban lényegében ugyanaz,
mint amikor egy ismert nemlineáris célfüggvénnyel dolgozunk.
Tegyük fel, hogy x, valamely növény, pl. búza termelesét je-
lenti. Tételezzük fel, hogy a búza összes területére felső
korlátot irunk elő, mondjuk 12oo ha-ban. Ha csak 800 ha bú-
zát termelnénk, akkor azt a legjobb talajon termelhetnénk. Az
ezen felüli termelést azonban kevésbé jó talajon tudjuk csak
biztosítani. Máris két szakaszváltozóra kell bontanunk x-,-et.
De lehetséges, hogy 800 ha-on belül csak 600 ha területre ele-
gendő vetőmaggal rendelkezünk a legbővebben termő fajtából.
Ekkor már három azakaszváltozóra van szükségünk. További bon-
tás válhat szükségessé a mütrágyaigény biztosítása, a gépesí-
tés megoldása, öntözött vagy száraz termelés, stb. szempontjá-
ból. E megbontás szerint természetesen más lesz az egyes sza-
kaszváltozókhoz tartozó célfüggvénykoefficiens is, azaz az
adott növénynél nemlineáris célfüggvénnyel dolgozunk, de sza-
kaszonként linearizált megközelítéssel oldjuk meg a feladatot.

Ilyen esetben természetesen eltérő lesz szakaszonként a
munkaerőszükséglet, gépszükséglet, stb. is, azaz a feltétel-
rendszer sem lineáris, de szakaszonként linearizált megkö-
zelítéssel oldjuk meg. Mint latjuk, a feladat ilyen megközelí-
tése gyakorlatilag igen hasznos, és mivel számítástechnikai-
lag nem jelent különösebb problémát, igen jól alkalmazható a
mezőgazdaságban.

7.3.3. Hiperbolikus programozás

Hiperbolikus programozásról beszélünk akkor, ha lineáris
feltételrendszer /egyenletek és egyenlőtlenségek/ nemnegativ
megoldásait tartalmazó L halmaz felett olyan racionális
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törtfüggvény maximumát keressük, amelyben mind a számláló,
mind a nevező legfeljebb lineáris. A hiperbolikus programo-
zás általánosan a következők szerint fogalmazható meg:

maximum

ahol az f/x/ és g/x/ legfeljebb első fokú polinomok, azaz
legfeljebb lineáris függvények. Ha történetesen a g/x/ nul-
ladfoku, akkor lineáris feladatról van szó. Ha az f/x/ nul-

ladfoku, akkor az / , függvény adódik, viszont az • /

maximumot a g/x/ =min. kielégiti, tehát a probléma ilyenkor
is visszavezethető közönséges lineáris programozásra.

Az f/x/ és g/x/ függvényeket részletesen felirva, a követ-
kező általános formát kapjuk:

z : m
C "V J_ f* "V _1_ -L* *̂ "V ta ^ /* V ^ ^

Tulajdonképpen a probléma több célfüggvény szerinti opti-
malizálást jelent, hiszen a feladatban két célfüggvényünk
van /mégpedig két lineáris célfüggvény/, s azt kivánjuk biz-
tositani, hogy hányadosuk a lehető legnagyobb értéket /maxi-
mumot/ vegye fel.

A hiperbolikus elnevezést az indokolja, hogy az egyválto-
zós:

lineáris törtfüggvény képe az /x, y/ sikon hiperbola.
Szemléltetésképpen néhány függvény grafikus ábráit mutatjuk
be / 32. ábra/.
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; /x 4 1/ b/ y

d/ y

H 1-

y = 1,5

z=l

i

b /

1 1 ^̂

y 1
1

" 1
|1
1
I
1
|

y = 1,5

1 i »1 ' x

A
I

j /

!/

H 1 1 >

Hiperbolikus függvények
32. ábra
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A hiperbolikus programozás alkalmazására sokszor van
szükség gyakorlati gazdasági számitások során. A mezőgazda-
sági vállalatok a lehető legnagyobb jövedelem elérésére tö-
rekednek, de nem mindegy az sem, hogy ehhez milyen áron jut-
nak. Lehet, hogy a maximális jövedelemtömeg elérése igen sok
élőmunka-ráforditást vagy jelentős beruházást igényelne. Nem-
csak a jövedelem tömege az irányadó, hanem azt is vizsgálni
kell, hogy milyen a jövedelem és a költségráfordítás viszo-
nya, azaz egy forint költségre mennyi jövedelem jut, illetve
az előbbieket véve alapul, egy forint beruházással, egy fo-
rint munkaráfordítással, egy dolgozóval, stb. mennyi jövede-
lem érhető el, stb. Általában is a mezőgazdasági vállalatok
/és más vállalatok/ tevékenysége nem Ítélhető meg egyetlen gaz-
dasági mutató alapján, illetve a vállalat nem egyetlen mutató
alakulását veszi figyelembe, hanem több mutató egyidejű vizs-
gálatára van szükség. Ez egyben azt is jelenti, hogy a gya-
korlati tervezés /döntésmegalapozás/ során általában több cél-
függvénnyel kell dolgoznunk, és azok abszolút értéke mellett
sok esetben arányukra /viszonyukra/ is tekintettel kell len-
ni.

A gyakorlatban előforduló hiperbolikus programozási fela-
datok /amikoris a lehetséges megoldások halmaza korlátos,
tehát a halmaz konvex poliéder, és amelyeknél a tört nevező-
je a lehetséges megoldások tartományában nem zérus/, szimp-
lex módszerrel megoldhatók. /A megoldás módszerét Martos Bé-
la magyar matematikus dolgozta ki./ Az:

maximum

hiperbolikus feladat induló tábláját ugyanúgy szerkeszt-
jük meg, mint lineáris programozási feladat esetén, csak
most a táblázatban két célfüggvény sor szerepel, az első a
célfüggvény számlálóját, a másik a nevezőjét tartalmazza.
A p 0, illetve c Q értéket a számláló, illetve nevező sorába

irjuk, az erőforráskapacitást tartalmazó oszlopba, azaz mint-
ha ezek erőforrások lennének.

Természetesen, ha a feltételek között egyenletek /csilla-
gos sorok/ vannak, most is képeznünk kell a másodlagos cél-
függvényt, s először e szerint végezzük a számolást, s csak
ennek megoldása után a hiperbolikus célfüggvény szerint.
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Az induló táblázatba még egy sort kell beépíteni a kö-
vetkezők szerint:

- °o
m

A t koordinátáit a formula alapíján minden szimplex táb-
lázatban ki kell számitani. A szimplex módszert alkalmazva,
a számításokat mindaddig kell folytatni, amig t., > 0, azaz
amig a t vektorban pozitiv elemet találunk. A generáló ele-
met általában abban az oszlopban választjuk, amelyben a
Tt_ koordinátája a legnagyobb.

Oldjuk meg az:

x1 ™ 3
+X3

2x1+ 4x 2

>= 0

i 12

= 8

= 5

maximum

hiperbolikus programozási feladatot.

Induló táblázatunk a következő:

u l

* U 2

* U 3
P

c

*z

x l

1

1

0

2

r-t.
i-i

x 2

1

0

1

4

2

1

x 3

1

1

0
3

1

2

12

8

5
2

-3

13
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A célfüggvény felfogható mondjuk ugy, ho^y a számláló-
ban a termelési érték, a nevezőben a termelesi költség ta- -
lálható, tehát a feladat az 1 Ft termelési költséggel elér-
hatő termelési érték maximalizálása. A célfüggvény számláló-
jában a konstans tag lehet például a gazdasági általános
költség - ami adott és nem függ /legalábbis jelentősen/ a
termelés szerkezetétől. A célfüggvény nevezőjében lévő kons-
tans pedig felfogható szintén egy fix költségként, mondjuk,
hogy a termékek értékesítéséből adódó költségként. /Megje-
gyezzük, hogy a p Q és c lehet nulla is egy feladatban. mi-
lyenkor ezek helyen az induló táblában 0 szerepel, de a
számitások során a 0 helyére valamilyen O-tól különböző szá-
mot fogunk kapni./

Mivel módosított normál feladattal állunk szemben, másod-
lagos célfüggvényt képeztünk /*z/, s először e szerint vé-
gezzük a számitást. Ilyenkor a t 1 koordinátáinak kiszámitá-
sára nincs szükségünk, csak majd" amíkor^már a másodlagos cél-
függvényt megoldottuk és a számitást t. szerint kell végez-
nünk.

Az előbbi induló táblázatból a harmadik sor harmadik osz-
lopában választva generáló elemet, a következő táblázathoz
jutunk:

u l

* U 2

x 3

p

c

*z

x l

H

13
0

2

1

1

X 2

0

- 1

1

1

1

- 1

*" U 3

- 1

- 1

1

-3

- 1

- 2

7

3

5

-13

- 8

3

Mivel továbbra is a másodlagos célfüggvény (szerint kell
számolni, a t koordinátáit most sem szükséges meghatároz-
ni. A második sor második oszlopából választva generáló ele-
met, következő a táblázatunk:
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u l
x l

X 3

P

c

*z

u 2

1-1

1

0

- 2

- 1

H

x 2

1

i-l

1

3

2

0

U 3

0

- 1

1

- 1

0

- 1

4

3

5

-19

-11

0

A másodlatos célfüggvényt megoldottuk, hiszen a másodla-
gos célfüggvény sorában a csillagos u.-khez tartozó oszlopo-
kat kivéve minden oszlopban nullát találtunk. Meg kell tehát
határozni a t koordinátáit*

T - CE 1 = -19 [-1, 2, 0] - (-11) [-2, 3, -l]

= [19, -38, qj - [22, -33, ll] = [-3, -5. - l l]

Í T = P o c T -

TAz előbbi táblázatban tehát a t koordinátáit beirva, a
következőt kapjuk: ~

x l
X3

P
c

t

* U 2

- 1

1

0

- 2

- 1

-3

X 2

i-l

.-1

1

3
2

-5

*U3

0

- 1

I-l

- 1
0

- 1 1

4

3

5

-19
-11

Ö
Mivel a t koordinátái között pozitiv elem már nincs, má-

ris optimálTs megoldáshoz jutottunk /ha volna pozitiv koor-
dinátánk, folytatnánk a számítást, eszerint választva gene-
ráló elemet/. Az optimális megoldás:
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T T

x = [3, 0, 5] u = [4, 0 0]

Leolvasható a táblázatból az is, hogy e termelési prog-
ram megvalósítása esetén a termelési érték 19 egység, a ter-
melési költség 11 egység és 1 forint termelési költséggel
1,78 forint termelési érték állitható elő. leolvasható to-
vábbá, hogy a második termék termelése esetén egy termékegy-
ség 3 Ft-tal emelné a termelési értéket, de egyidejűleg a
termelési költség is emelkedne 2 Ft-tal. Mivel itt a terme-
lési érték és a költség hányadosa 3/2 =1,5; ez rontaná az
előbbi 1,78-as arányt, azaz a hiperbolikus célfüggvény érté-
két. Ugyancsak leolvashatjuk, hogy a második erőforrás egy
egységének megtakaritása 2 Ft-tal csökkentené a termelési
értéket és 1 Ft-tal a termelési költséget. Mivel itt az a-
rány 2/1 = 2, ez is rontana a célfüggvényen. Sőt a harmadik
erőforrás megtakaritása a költség csökkentése nélkül csök-
kentené a termelési értéket, ami még kedvezőtlenebb.

A célfüggvény számlálóját és nevezőjét fel is cserélhet-
tük volna. Ekkor az egységnyi termelési érték előállitásának
költségét Aöltségszintet/ kapjuk. Nyilván most nem a célfügg-
vény maximalizálása, hanem éppen minimalizálása lenne érdeke
a vállalatnak. /Ugyanígy lehet célunk az egységnyi jövedelem
előállítására felhasználandó termelési költség, vagy munkae-
rő, vagy munkabér, vagy beruházás, vagy import anyag, stb./

Eddigi ismereteink alapján azonban nem jelent problémát
számunkra az ilyen feladat megoldása sem, hiszen a:

T
£. £ - co

T
.x - p o

min.

helyett a -1-gyel szorzott célfüggvény maximumát keres-
hetjük, azaz:

T - c
C X O

T
-££ + P0 .

vagyis -1-gyel a nevezőt szorozzuk meg.

Természetesen hiperbolikus célfüggvény esetén is /de ha-
sonlóképpen a konvex, vagy konkáv célfüggvény esetén is/ fel-
merül a termelési szerkezet és a termelesi források egyidejű
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optimalizálásának kérdése, illetve a programvektor és ka-
pacitások optimalizálásának problémája. Ilyen esetben viszont
ismét követelmény a gépek egészértékűsége, vagyis hiperboli-
kus vagy konvex, illetve konkáv vegyes egészértékű feladat-
hoz jutunk. E problémák részletesebb kifejtése azonban megha-
ladja tananyagunk kereteit.

7.3.4. A Langrange-féle multiplikátor módszer

Tananyagunk nem teszi lehetővé, hogy a nemlineáris progra-
mozási feladatok valamennyi megoldási módszerével foglalkoz-
zunk, de ha csak röviden érintőlegesen is, szükséges megem-
lékeznünk a Langrange-féle multiplikátor módszerről.

Gyakran merülnek fel ugyanis a gyakorlati gazdasági fel-
adatok között olyanok, amelyek megoldásánál ez a módszer ha-
tékonyan alkalmazható.

A Langrange-módszer jól alkalmazható olyan feltételes szél-
sőérték-feladatok megoldására, amikor a feltételek egyenletek-
kel vannak megadva. Ez azt jelenti, hogy keressük az f/x/
/JJ € E / függvény szélső értékét /maximumát, vagy minimumát/,

a Q jj./^/ = ° A = l,2,...,m, m = n/ feltételek mellett.

Már ismerjük, ho^y a feltételi egyenlet jobb oldalán eset-
leg előforduló nemzerus értékek az$,/x/ függvényekbe beol-
vaszthatok. A feladatban azt is jelöltük, hogy a feltételek
száma nem nagyobb, mint a változók száma /m = n/, mert e-
gyébként nincs feltétlenül biztositva az egyenletek megold-
hatósága.

Ha a lehetséges megoldások:

H = ÍS. I • i /*/ = °» k = If2,...,m} halmazát te-
kintjük, a feladat ugy is megfogalmazható, hogy keressük az
f/x/ függvény maximumát /vagy minimumát/ a H halmazon.

Feltesszük, hogy:

a./ az f/x/ és * k / x / /k = 1,2,...,m/ függvényeknek

léteznek parciális deriváltjai a H halmazon és hogy

b./ a f v / x / = 0 A = l,2,...,m/ egyenletekből n-m

számú változó egyenértelmüen kifejezhető.

E feltételek mellett tekintsük az:

F /x/ - f /x/ + % A,k • k /x/
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függvényt, ahol [ju, ̂ 2-*»»- ̂ -m-í
 eS^e^-°Te ismeretlen

konstans vektor.

Az f/x/ függvény feltételes szélsőérték helyei ekkor kie-
légitik az: ,

3F
= 0, •ij./x/ = 0 /i = 1,2,...,m, k = l,2,...,m

n + m egyenletből álló egyenletrendszert.

A X k konstansokat Langrange multiplikátornak nevezzük.
Az egyenletrendszer x-re és ^-ra történő megoldása szol-
gáltatja a keresett stacionárius helyeket /ahol a függvény de-
riváltja 0-val egyenlő/ és az ismeretlen X vektort. Ez egy-
ben azt is jelenti, hogy ha az:

= 0

-nak nincsen megoldása, akkor az f/x/-nek nincsen szél-
ső értéke a • k/x/ = 0 feltételek melleft.

Tekintsünk példaként egy műtrágya-elosztási feladatot.
/Lásd: Szép Jenő: Analizis. Közgazdasági és Jogi Könyvkiadó-
Budapest, 1972./ Tegyük fel, hogy egy termelőszövetkezet
három tábláján /A, B, C/ a talajtól függően más-más keverék-
műtrágyát használ. A terméshozam és a mütrágyafelhasználás
között természetesen kapcsolat van /a terméshozam függ a mű-
trágyái elhasználástól éspedig nemlineáris formában/, s e
függvénykapcsolatokat jelöljük rendre f^/x^/, f2/x /, f,/x,/
függvényekkel. Tegyük fel, hogy az A, B, C táblák nagyságát
rendre a, b, c-vel jelöljük.

A három tábla együttes hozamát ekkor a:

x2,z / = a^/x^/ + bf 2/x 2/ + cf^/x^/

függvény reprezentálja.

Az f, /x-, I, f,./x„/, f /x,/ függvények ismeretében az
X X cd o -5

•f/x-j^x^x,/ függvény J maximuma kiszámítható. Ez feltétel
nélküli maximum, hiszen egyelőre csak egy függvény szélső
értékét kerestük, feltétel /feltételek/ nélkül.
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Tegyük fel most, hogy a műtrágya beszerzésére korláto-
zott pénzösszeggel rendelkezünk. Jelöljük ezt az összeget
s-sel. Legyen t^, tg, t rendre az A, B, C táblán hasz-
nált keverékmütrágya egységára. Ennek alapján az:

feltétel adható meg.

Ha e feltételek mellett határozzuk meg az f/x-,,x2,x,/

függvény maximumát, már feltételes szélsőérték problémát ol-
d k L f l d t k bdunk

f

f

meg.

I'V

2/V

Legyen
= 4

= 4

feladatunkban:
+ 33C*i — -^T i

2
+ 5x 2 - x 2

és legyenek a téblanagyságok a következők:

a = 500 ha
b = 200 ha •
o = 100 ha

Tegyük fel, hogy 20 000 Ft áll rendelkezésünkre műtrágya
beszerzésére és az A táblán használandó keverék egységára
40, ugyanez a B táblát tekintve 30, a C tábla vonatkozásában
pedig 20. Ennek alapján feltételi egyenletünk:

40 • 500 x x + 30 • 200 x 2 + 20 • 100 x 3 = 20 000,

ami egyszerűsítés után implicit alakban: .

3x 2 + x^ - 10 = 0

E feltétel melletti szélső érték kiszámítására a Lang-
range-féle multiplikátor módszert használva, képeznünk kell:

2 2
500 (4 + Jxx - Zxj^) + 200 (4 + 5x 2 - x 2 ) +

2
100 (2 + 6x 3 - 3x 3) + %(lOx x + 3x 2 + x 3 - 10)
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függvényt. A megoldandó egyenletrendszer:

= 500 /3 - 4X-, / + 10 > » 0

3P
£ — = 200 /5 -
0 x2

100 /6 - 6x,/ += 100 /6 - 6x,
o x,

10 x-]_ + 3x2 + x 3 - 10 = 0

E négy egyenlet megoldásából kapjuk, hogy:

x x = 0,345; x 2 = 1,885; * 3 = 0, 865

a feladat optimális megoldása. Ha a feladatot feltétel
nélkül oldottuk volna meg, az:

x x = 0,75; x 2 = 2,5; x 3 = 1

műtrágya normákat kaptuk volna. Ekkor viszont:

40 • 500 -0,75 + 30 • 200 2,5 + 20 • 100 • 1 = -

15 000 + 15 000 + 2 000 = 32 000 Ft-ot

kellett volna felhasználni műtrágya beszerzésre. Mivel a-
zonban 20 000 Ft állt rendelkezésünkre, az:

x^ = 0,345; x 2 = 1,885; x, = 0,865 alapján:

40-500-0,345 + 30-200-1,885 + 20-100-0,865 =

= 6 900 + 11 310 + 1 730 = 19 940 S 20 000 Ft -ra

volt szükség /az eltérés kerekítésekből adódik/. A megol-
dás szerint az A táblán 0,345 • 500 = 162,5 q, a B táblán
1,885 • 200 = 377 q és a C táblán 0,865 • 100 = 86,5 q mű-
trágya használandó fel.

Természetesen a példában keverékmü-fcrégyát tekintettünk. A
probléma lényegén azonban az sem változtat, ha a N,P,K műtrá-
gyákat a vállalat keveri, vagy ha féleségenként szórja ki a
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táblákra. E műtrágyák arányát /s talajnak megfelelően/
meghatározhatjuk.

Az f j/xj/ függvények alapíján meghatározhatjuk a várható
terméshozamot is táblánként és összesen. Ez példánkban a
következő:

f-j/xj/ = 4 + 3xj_ - 2x 2 = 4 + 3-0,345 - 2-0.3452 =

= 4 + 1,035 - 0,238 = 4,797 q/ha, illetve

500 ha-on 2 398,5 q

f2/x2/ = 4 + 5x 2 - x
2 = 4 + 5-1,885 - 1.8852 =

= 4 + 9,425 - 3,553 = 9,872 q/ha, illetve

200 ha-on 1 974,4 q

f 3 A 3 / = 2 + 6x, - 3x
2 = 2 + 6-0,865 - 3-0,8652 =

= 2 + 5,19 - 2,24 = 4,95 q/ha, illetve

100 ha-on 495 q, vagyis az összes termés:

2 398,5 + 1 974,4 + 495 = 4 867,9 q.

Természetesen ilyen jellegű problémák megoldásához ismer-
ni kell az f j_/Xj/ függvényeket. E tekintetben jól felhasz-
nálhatjuk a regressziós analizist, illetve a termelési függ-
vényeket.
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7.4. -Dinamikus programozás

A gazdasági feladatok megoldása általában a döntések so-
rozatát igényli. Ez a döntéssorozat egymáshoz kapcsolódó
döntések rendszerét jelenti, amelyek időbelileg, vagy térbeli-
leg, vagy időbelileg is és térbelileg is követik egymást a-
szerint, hogy a gazdasági folyamatok térbelileg és/vagy idő-
belileg zajlanak le.

Például a mezőgazdaságban,adott növénytermelési folyamata
időben zajlik le vetéstől a betakarításig, az évek egymásu-
tánjai során valósul meg a vállalat gazdasági változása, idő-
ben zajlik le $gy-egy beruházás megvalósítása. De térbelileg
zajlik le például a növények táblán való elhelyezkedése, vagy
térben és időben zajlik le a szántás és vetés munkafolyamata,
ugyanakkor például az Időben zajlik le a vetőmag csávázása,
stb.

A dinamikus programozás az időbeni folyamatok vizsgálatára
szolgáló eljárás. Tekintve azonban,hogy természetüknél fogva
a térbeli folyamatok az időbeli folyamatokhoz hasonlóan vizs-
gálhatók módszertani szempontból a dinamikus programozás jól
alkalmazható a térbeli vizsgálatok elvégzésére is, illetve
minden olyan vizsgálat elvégzésére, amikor egymástól függő
döntések megalapozásának szükségessége merül fel.

A fentiek alapján a dinamikus programozás fogalmát ugy ha-
tározhatjuk meg, hogy dinamikus programozásnak nevezzük a
matematikai programozás" módszerét, amely egymástól független
döntések sorozatának optimalizálására alkalmas.

Az időbeli függőség és a dinamikus programozással megold-
ható feladatok nem egyértelműen fedik egymást. Ez nem csak
abból adódik, hogy - mint már emiitettük - a dinamikus prog-
ramozás nem csak az időbeli, de gyakran a térbeli folyamatok
vizsgálatára is alkalmas, tehát a dinamikus programozás alkal-
mas statikus feladatok megoldására is, hanem abból is, hogy
sok esetben vizsgálatainkban az időtől függő folyamatokat is
vizsgálhatjuk statikusan, gyakran, a könnyebb megoldhatóság ér-
dekében. Ilyenkor legtöbbször az időbeli folyamatot lépések-
re bontva statikusan vizsgáljuk.

Tegyük fel például, hogy egy mezőgazdasági vállalat tervét
kívánjuk elkészíteni öt éves időszakra. A feladat megoldha-
tó dinamikus programozással, kiindulva egy kezdeti időpont-
ban meglévő helyzetből, vizsgálva az öt ev során az időben
lezajló, egymásraépülő gazdasági folyamatokat és eljutva az
öt éves időszak végső állapotáig. Ez igen bonyolult feladat
volna. Ha meggondoljuk egy év dinamikus vizsgálata is igen
nagy feladatot jelent, de az évek is egyoásra épülnek, egy-
mástól függenek, mégpedig nem csak a folyamat egészét, de
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általában részeit tekintve is.

Megoldható a feladat ugy, hogy az egyes éveket statikus
problémaként kezeljük, s csupán az évek egymásraépülését,
egymásutánját vizsgáljuk dinamikus programozással. Ilyenkor
egy-egy év tervét statikus programozással készitjük, s e
statikus terveket foglaljuk dinamikus modellbe.

Eljárhatunk agy is, hogy az egyes évek terveinek elkészi-
tésére alkalmazzuk a dinamikus programozást, s az évek egy-
másutánját statikus lépések sorozatával vizsgáljuk.

Végül eljárhatunk ugy is, hogy,statikus vizsgálattal old-
juk meg az évek tervezését, de azokat egymás után, egymásra
épülten, s igy jutunk el az öt év terveinek elkészítéséhez.
Ez esetben statikus módszerrel dinamikus problémát oldottunk
meg.

láttuk tehát, hogy dinamikus problémát vizsgálhatunk sta-
tikus módszerekkel,viszont statikus probléma vizsgálata során
is alkalmazhatunk dinamikus módszereket.

Tananyagunk korlátozott keretei nem teszik lehetővé a
dinamikus programozás részletesebb kifejtését, általában csu-
pán a probléma érzékeltetésére, alapjainak feltárására szo-
ritkozhatunk, inkább a gazdasági alkalmazást, dinamikus gaz-
dasági problémák megoldásának elveit tartva szem előtt.

Lássuk egy egyszerűbb példa segítségével a dinamikus
programozás lényegét.

Rendelkezzünk x mennyiségű pénzösszeggel, melyet két ü-
zemnél kivánunk beruházásra forditani. Jelöljük ezeket A-val
és B-vel. Forditsunk A üzem beruházására y pénzösszeget, igy
B számára marad x-y összeg.

Legyen e beruházás politika hatására, az egy év alatt
elérhető haszon:

g /y/ és h /x-y/

és legyen év végén az A illetve B üzem beruházott ér-
téke:

a /y/ és b /x-y/. • -

A H /x,y/ = g/y/ + h /x-y/

a rendelkezésre álló x beruházási összegnek az y és
x-y felosztása esetén:
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f 1 /x/ = max. H /x,y/ 0£ y í x

optimális értéket ad.

Jelöljük yQ /x/-el ezt az 7 elsőfokozatú döntést, amely
döntés esetén ez az optimális haszon elérhető.

A második érben /feltére, hogy/ az A és B üzembe be-
ruházott eszközök részben, ragy égésében eladhatók, azaz:

x^ * a /y/ + b /x-y/

kezdeti érték felett rendelkezünk, s azt kell hasonló mó-
don szétosztani y-, és x-,-y-, részre. Ennek alapján a
második ér régén az előző érirel együtt összesen:

f 2 /x/ = max. H /x,y/ + H /x^y^/ - max. I H /x,y/ +

+ max. H /XitTi/l - max- H /x,y/ + f 1 /a^/|

optimális haszon érhető el. /A maradék x-, tőkét akkor hasz-
náliuk fel ugyanis legcélszerűbben, ha az egy ér alatt elér-
hető f-j_ /x-^/ maximális hasznot nyerjük./

Legyen:

Xg = a /y-j/ + b /x^y^y.

Az n ér alatt elérhető optimális haszen:

fn /x/ = max. |H /x,y/ + f ^ [P / x , y / |

ahol fB_̂  j e lö l i az első ér leforgása után még fennmaradó:

P /X,T/ » x x B a /y/ + b /x-y/

tőke optimális kihasználásából a hátralévő n-1 ér alatt
optimálisan elérhető hasznot.

Mivel a k-adik ér titán fennmaradó tőke:
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ezért n fokozata y Q « y,y^,...,yni_^ döntéssorozat /poli-
tika/ lálaaztáaával n ér után az x = x kezdeti tőkéből
a:

K /y,:f1,5r2,...,yn_1/ •
 H /x,ar/ + H /xj^,^/ +...+ H

függvény maximuma adja az optimális hasznot a:

0 í T k ^ Oj.

" a ^ k ^ +

feltételek mellett.

A probléma tehát egy elég bonyolult feltételesen szélsőér-
ték-feladat, általában a K maximumát a fokozatos közelítés
módszerével határozzuk meg.

Egyszerűbb és a mezőgazdasági vállalatok tervezése során
inkább alkalmazható eljárás, amikor a dinamikus tervezési
feladatot lineáris programozási modellekkel oldjuk meg.

Ha például egy ötéves időszakra kívánjuk egy mezőgazdasági
vállalat tervét optimalizálni a lineáris programozás alkalma-
zásával, akkor a feladatot kétféle módon oldhatjuk meg, szi-
multán optimalizálással, vagy rekurziv optimalizálással.

Szimultán optimalizálás

Elkészítjük minden részidőszak/folnden év/ lineáris prog-
ramozási modelljét, természetesen figyelembevéve az időbeli
változás során a fajlagos ráfordítási és hozam adatok, azaz
a technológiai adatok megváltozását.

Az igy elkészült rész időszakra vonatkozó /éves/ modelleket
kvázidiagonális elrendezésben egy hipermodellbe építjük be.

Gondoskodnánk kell természetesen a modellblokkok /éves terv-
medellek/ megfelelő kapcsolatának biztosításáról . így pél-
dául az előző években megtermelt jövedelem egy része a terme-
lés bővítésére felhasználható, csak akkor épüljön fel egy is-
tálló, ha azt a további években is jövedelmezően tudjuk hasz-
nosítani, stb.

Az elmondottakat röviden matmatikai formulával felírva a
következőket kapjuk:
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=

ahol:

X, = az i-edik év programvektora

A, - az i-edik év technológiai mátrixa

b. = az i-edik év korlátvektora

K. = a mátrixblokkok kapcsolatára vonatkozó együtthatók-
nak az i-edik évre vonatkozó mátrixa

b^ = a kapcsolati feltételek korlátvektora

cí = a célfüggvénykoefficiensek i-edik évhez tartozó rek-
tora.

A modellt vázlatosan a 33. ábrával szemléltetjük A » követ-
kező oldalon./

Rekurzív optimalizálás

Rekurzív optimalizálás során az egyes részidőazakok modell-
jét önállóan, egyenként oldjuk meg ugy, hogy minden modell
felépitésénél figyelembe vesszük az előző modell /modellek/
megoldásait is.

Kiindulhatunk a kezdő időszakból, /első évből/ éa igy
haladhatunk az utolsó /befejező/ időszakig, de eljárhatunk
ugy is, hogy az utolsó időszakból indulunk ki, tehát a vég-
ső cél /utolsó év/ optimumát határozzuk meg és visszafelé
haladva kívánunk elérkezni a kiinduló év állapotához. Az u-
tóbfci efjárás természetesen nehezebb, esetleg a közbeeső
feladatok többszöri megoldását teszi lehetővé, a modellek mó-
dosításával, hogy valóban a kiinduló időszak állapotát érjük
el.

A rekurzív programozás nem ad egzakt optimális megoldást,
csak közelitő módszernek tekinthetjük. Előnye viszont, hogy
lényegesen kisebb modelleket kell megoldani /igaz, hogy több-
ször/, valamint hogy az éves tervek között nem csak lineáris
kapcsolatok kezelhetők.
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7.5. Sztochasztikus modellek

A sztochasztikus modellek részletesebb tárgyalása megha-
ladja tananyagunk kereteit, s csupán mibenlétének megismer-
tetése lehet a célunk.

Sztochasztikus modellekről beszélünk akkor, amikor a mo-
dell paraméterei, vagy paramétereinek egy része nem egyértel-
műen meghatározott, determinisztikus, hanem valószínűségi
változó. Ilyenkor a paraméterek valószínűségi függvényeinek
meghatározásához a valószinüségszámitás és a matematikai s-
tatisztika nyújt segitséget, gyakran akkor is, amikor való-
jában sem többszörös megfigyelésre, sem kísérletezésre nincs
lehetőség, de amikor a vizsgált jelenségre, vagy hasonló je-
lenségre vonatkozólag előzőleg már történtek megfigyelések,
kisérletek. Gyakran lehet bonyolult determinisztikus jelen-
ségeket is sztochasztikus modellekkel vizsgálni, amikor a
vizsgált jelenség valamilyen valószínűségi eloszlásfüggvény-
nyel jól leírható.

A sztochasztikus modellek felépítése általában ugyanazt a
logikát követi, mint a determinisztikus modelleké. Itt is van
kitűzött cél, vagy vannak kitűzött célok, megadhatók azok a
feltételek, amelyek a cél elérését behatárolják. Most azon-
ban valószínűségi változókkal kell dolgoznunk.

A sztochasztikus programozás döntési modelljeinek elméle-
té a matematikai statisztikai döntéselméleten és a matemati-
kai programozás /főként a nem-lineáris/ elméletén alapszik:
Két fontos irányzata alakult ki, az egyik a "valószínűség-
gel korlátozott programozás", a másik a "kétlépcsős sztochasz-
tikus programozás".

Legyen programozási modellünk a következő:

x = 0

Ax = b

Ix = &_

c_ x = min.

Ha most £> a véletlentől függ /tehát egy véletlen vektor/,
valószínűségi törvényeit a valószinüségeloszlás irja le. Té-
telezzük fel, hogy a /S vektor /£ ^ komponenseinek való-
színűségi eloszlásfüggvénye F^/z/ a következő:
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ahol m a T sorainak száma.

A/3 véletlen vektor értéke, realizációja esetén minden
i-re:~

vagy *t /x/ = A vagy

ahol: x kielégíti az Ax i b, x = 0 feltételeket,
pedig a T "nátrii i-edik sora.^ ~ ~

Ha a: .

áll he, akkor az eszel kapcsolatos veszteség legyen u^
a különbség minden egységére, mig a másik esetben h^. Az u^
hí konatansok, i = l,2,..--,m. Az összköltség r ár na tó ér-
téke G /%/ a következő:

i
x/ - Z o ± / /T±i - z/ fj/z/ +

/ /z - T±x/ f±/z/f

Eredeti feladatunkat most a következőképpen fogalmazhat-
juk meg:

e x + g/x/ m min.

azaz minimalizáljnk az eredeti célfüggvény, valamint a
sztochasztikus paraméter véletlen jellegéből eredő veszte-
ség várható értékének összegét.

Ha a G/x/ függvény konvex, és a fi í valószínűségi válto-
zók t*J%f sűrűségfüggvényei folytonosak, akkor a feladat
konvex programozási feladat.
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8. FEJEZET • /''

SZÁLLITÁSSZERVEZÉS PROGRAMOZÁSSAL

8.1. A szállitási feladat megfogalmazása

Tegyük fel, hogy valamilyen anyag szállításét kell megszer-
veznünk. Induljunk ki abból az alapesetből, hogy az elszálli-
tandó anyag három raktárban van elhelyezve és azt négy fel-
használó helyre kell elszállítani. Rögtön felmerül a kérdés,
hogy honnan, hova, mennyit, azaz a három tárolóhelyen lévő
mennyiséget hogyan kell elosztani a négy felhasználóhely kö-
zött.

Azokat a helyeket ahonnan szállítani kívánunk tárolóhelyek-
nek, vagy feladóhelyeknek, ahova szállítunk azokaTTfelhasználó
helyeknek, rendeltetés"! helyeknek, fogadóhelyeknek szokás ne-

Nyilvánvalóan a szállítások programozásának csak akkor van
értelme és jelentősége, ha az egyes feladóhelyek és rendelte-
tési helyek közötti szállítás költsége eltérő. Ebben az eset-
ben van jelentősége annak, hogy meghatározzuk melyik feladó-
helyről, melyik rendeltetési helyre, mennyit célszerű szállí-
tani, hogy a szállitási feladatot a legkisebb szállitási költ-
séggel oldjuk meg. Amennyiben ugyanis a szállitási költségek
minden feladó és rendeltetési hely viszonylatában azonosak
lennének, akkor a szállítások bármilyen szervezése esetén azo-
nosak lennének a szállitási költségek, vagyis a szállítási
költség szempontjából a szállitásszervezésnek nem volna jelen-
tősége. Hasonlóképpen vethető fel a szállitási távolságok mi-
nimalizálása, vagy más cél, amelyet a szállitésszervezésnél
figyelembe kívánunk venni.

Induljunk ki tehát egy egyszerű esetből, amikor az A,B,C
tárolóhelyekről az I,II,III,IV rendeltetési helyekre kell va-
lamilyen anyagot elszállítani. Tegyük fel, hogy a feladóhe-
lyeken tárolt összes anyagmennyiség megegyezik a rendeltetési
helyek összes szükségletével, azaz összesen 3o egységnyi. /Egy-
szerű számokkal dolgozunk a 3o egység lehet tonna, teherautó
rakomány, vagon, vagy más egységekben megadva/.

Legyen a feladóhelyeken tárolt mennyiség egységesen lo egy-
ség, tehát minden tárolóhelyről lo egységnyi anyag szállítha-
tó el. A rendeltetési helyek igénye legyen 2,12,4,12 egység.
Meg kell még határozni az egyes feladdhelyek és rendeltetési
helyek közötti szállítások költségeit.

Az adatokat a következő táblázatba foglaltuk /lásd követ-
kező oldalon/.

A táblázat oldalrovataiba a tárolóhelyeket, fejrovataiba a
rendeltetési helyeket irtuk be. Az utolsó oszlop az egyes
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Tároló-

helyek

A

B

C

Igény

Rendeltetési helyek

I

10

20

18

2

II

8

16

18

12

III

6

8

16

4

IV

4

14

8

12

Készlet

10

10

10

30

helyeken tárolt mennyiségeket, az utolsó sor a rendeltetési
helyekre szállítandó mennyiségeket tartalmazza. Esetünkben a
feladóhelyeken tárolt mennyiségek és az igények összege meg-
egyezik /3o egység/. A táblázat belső részét költségmátrix-
nak nevezzük. Tartalmazza azokat a költségeké^ amelyek á"
különböző tároló és rendeltetési helyek között felmerülnek.
A feltüntetett költségek is különböző egységben lehetnek meg-
adva, pl. forintban, tizforintban, százforintban, dollárban,
stb.

Jelöljük x..-vei azt az egyenlőre ismeretlen anyagmennyi-
séget, amelyet az i-edik tárolóhelyről a j-edik rendeltetési
helyre szállítunk. Ezeket az értékeket természetesen ugy ki-
vánjuk meghatározni, hogy az összes szállítási költség mini-
mális legyen. Az elszállítandó mennyiségeket táblázatba fog-
lalva a következőket kapjuk:

Tároló-

helyek

A

B

C

Rendeltetési helyek

I

xll
X21
X31

II

X12
X22
X32

III

X13
X23
X33

IV

X14.
X24
X34

Könnyű észrevenni, hogy az ismeretlenekhez irt indexek
közül az első mindig a tárolóhelyre, a második a rendelteté-
si helyre utal, azaz ahogyan a mátrixok esetében megszoktuk
az első a sorindex, második az oszlopindex.

Hasonlóképpen jelölhetjük például c. .-vei az i-edik £<5la-
dóhelyről a j-edik rendeltetési helyre történő szállítási
költségeket is, vagy fj-vel az i-edik feladóhelyen tárolt

anyag mennyiségét és r.-vel a j-edik rendeltetési helyen i-

genyelt anyagmennyiséget. E szimbólumok felhasználáséval
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az előző táblázatot felírhatjuk a következőképpen:

Tároló-

helyek

A

B
C

Igény

Rendeltetési helyek

I

=11

=21

=31

rl

II

=12
=22
°32

r2

III

=13
=23
=33

r3

rv

=14
=24
=34

r4

Készlet

fl
f2
f3 ^ '

Feladatunk tehát annak meghatározása, hogy melyik fela-
dóhelyről, melyik rendeltetési helyre, mennyit szállítsunk,
hogy valamennyi feladaóhelyről elszállítsuk a tárolt meny-
nyiséget és kielégítsük valamennyi rendeltetési hely igé-
nyét, de az összes szállítási költség minimális legyen, E
köiretelményeket a következő matematikai formulákkal Írhatjuk
elő:

l o x l l

+ 14*0

X21

I8X

^12

S22

£32

E21

£22

;32 +

£13 + X14 =

"•23 24

JC33 + x 3 4

£31

£12 + X22 + X32

S13 + X23 + X33

£14 + X24 + X34

Í

16X33 -

10

10

10

2

12

4

12

• 8x 3 4 .

c22 +
 8z23 +

= minimum!

X33,

X12' X13* X14» X21« X22' X23* X24» X31» X32»

X l 0

Az elaő formula a célfüggvény, amelyben az összes szál-
lítási költség minimalizálását irtuk elő. A következő for-
mulákban előírtuk, hogy minden tárolóhelyről el kell szállí-
tani az ott térolt mennyiséget és minden rendeltetési hely-
re oda kell szállítani az igényelt mennyiséget. Végül az
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utolsó formula a nemnegativités feltételét fogalmazza meg.

8.2. A feladat megoldása szimplex módszerrel

Vezessük be a következő jelzéseket:

- = f l l ' °12' C13' C14' C21' C22' °23' °24» C31»
C32' °33' °34]

X12' X13' X14' X21' X22' X23' X24' X31'

X32' X33'
£34]

xll X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

xll X31 X31 °

X12 X22 X32 °

X13 X23 X33 °

X14 X34

Ennek alapján a lineáris programozási feladat a már ismert
formulákkal Írható fel, azaz:

£ = 0

A x = b

T
E x = minimalis

Szerkesszük meg a már Ismert konkrét feladat induló szimp-
lex tábláját /lásd következő oldalon/.

A feladat tehát módosított lineáris programozási feladat,
ahol a célfüggvény minimumát /vagy mínusz egyszeresének
maximumát/ keressük.

A feladat optimális megoldása a következő:

'11 = 6, x13 0, 2,
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= 0, 3

= 0, 3

z = 284

6, x 2

0, x 3

3 = 4, x 2

3 = 0, x 3

4 = 0,

4 = 1 0

ul

U3
U4
»?.
U6
U7
z

xz

X U x

1

0

0

1

0

0

0

-10
2

1

0

0

0

1

0

0

-8
2

12 x

1

0

0

0

0

1

0

-6
2

13 x

1

0

0

0

0

0

1

-4
2

14 x

0

1

0

1

0

0

0

-20
2

21 x

0

1

0

0

1

0

0

-16
2

22 x

0

1

0

0

0

1

0

-8
2

23 x

0

1

0

0

0

0

1

-14
2

24 X31 x

0

0

1

1

0

0

0

0

0

1

0

1

0

0

-18 -10
2 2

32 x

0

0

1

0

0

1

0

-16
2

33 X34

0

0

1

0

0

0

1

-8
2

10

10

10

2

12

4

12

0
60

Viszonylag egyszerű feladatunk volt, három feladóhely
négy rendeltetési hely és hét feltételből álló 12 iamec
retlenes feladatot kellett megoldanunk. A szállítási feladat
megoldása viszonylag nagyméretű lineáris programozási fela-
dathoz vezet, aminek kezelése nehézkes lehet. Képzeljük csak
el, ha meg akarnánk szervezni, hogy a mezőgazdasági üzemek
búza termését az állami tárolóhelyekre megfelelő szállitás-
szervezéssel a legkevesebb szállítási költséggel oldjuk meg.
Mondjuk az állam 13oo mezőgazdasági vállalattól vásárolna
búzát, és azt például loo állami tárolóhelyre kívánná beszál-
lítani. A legegyszerűbb esetben is 14oo feltételből álló
13o ooo ismeretlenes feladatot kellene megoldani. Szerencsé-
re vannak, más módszerek is a szállitási feladatok megoldá-
sára.

8.3. Disztribúciós módszer. Redukált költségmátrix.

A disztribúciós, vagy szétosztási módszernek az a lénye-
ge, hogy kiválasztjuk a költségmátrix legkisebb elemét, s
erre a helyre /ahol a legkisebb a szállitási költség/ a
maximális szállítandó mennyiséget programozzuk. Ezután er-
ről a helyről kiindulva aor- vagy oszlopirányban haladva
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/bástya mozgással/ folytatjuk a szállítások programozását /a
szállítási feladat szétosztását. Eljutunk egy lehetséges prog-
ramig, amely a feladat egy lehetséges, de nem biztos, hogy op-
timális megoldását adja. Megállapítjuk e lehetséges megoldás-
hoz tartozó célfüggvény értékét, majd az adott, lehetséges
megoldást felülvizsgáljuk és javítjuk a programot mindaddig,
amig az lehetséges.

Tegyük az előbbi számszerű feladatot. A költségmátrix leg-
kisebb elemét az első sor, negyedik oszlopban találjuk /c-, ./.
Erre a helyre lo egységnyi anyag szállítását programozhat- *
juk, hiszen az A tárolóhelyen lo egységnyi anyagot tárolunk,
a IV. rendeltetési hely igénye 12 egység. Ez azt is jelenti,
hogy a IV. rendeltetési helyen még két egység igény kielégí-
tetlen. Oszlopirányban haladva a legkisebb költséget a harma-
dik sorban találjuk, tehát a IV.rendeltetési hely fennmaradó
2 egységnyi igényét a C feladóhelyről célszerű kielégíteni.
E helyre programozva 2 egységet a IV.rendeltetési hely igé-
nyét teljesen kielégítettük. A C tárolóhelyen azonban még
8 egység elszállításra vár. Most sor irányban haladunk, s
a legkisebb szállítási költséget a III. oszlopban találjuk.
E rendeltetési hely igénye csak 4 e&ysé^. A 4 egységet ide
programozva a III. rendeltetési hely igényét teljesen kielé-
gítjük, de a C tárolóhelyen még mindig rendelkezünk 4 egy-
séggel, amit el kell szállítani. Tovább haladunk tehát sori-
rányba és a II. rendeltetési helyhez jutunk, amelynek idénye
12 egység. Ide programozzak a C tárolóhelyen még meglevő
4 egységet, ami által a C tárolóhelyről minden mennyiséget
elszállítottunk. A II. rendeltetési helyen még 8 egységnyi
igény kielégítetlen. Most oszlopirányba haladunk és a B
tárolóhelyhez jutunk. Mivel az itt tárolt mennyiség lo egység,
ebből 8 egységet II.'rendeltetési hely számára juttatva a II.
rendeltetési hely, igényét kielégítjük, viszont a B tároló-
helyen még két egységnyi mennyiség elszállításra vár. Most
sorirényba haladva elérjük az I.rendeltetési helyet. Ennek
igénye éppen 2 egység, s ennek kielégítésével egyidejűleg a
B tárolóhelyről is minden mennyiséget elszállítunk.

Foglaljuk táblázatba a kiinduló feladatot, valamint az
eddigi megoldást, nyillal jelölve a haladási irányt és a
szállítási költséghez,jobb felső sarkához odaírva az adott
helyre programozott szállítandó mennyiségeket. /Lásd követ-
kező oldalon./

A táblázatból könnyen kiolvashatjuk, hogy minden tároló-
helyről elszállítottuk a tárolt mennyiséget és kielégítet-
tük minden rendeltetési hely igényét. Vitathatatlan tehát,
hogy a kapott megoldás az adott szállitási feladat egy lehet-
séges megolclása, egy lehetséges szállitási program. Kérdés
azonban, hogy ez a megoldás optlmális-e, vagyis ehhez a szál-
lítási programhoz tartozik-e a legkisebb szállitási költség,
vagy ennél olcsóbb szállitási program is lehetséges.
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A

B

C

I

10

20

18

2

II

8

16

18

12

III

6

8

16

16

IV

4

14

8

12

10

10

10

A

B

C

I

10

10 2

18

2

II

8

— 16*

J
12

III

6

8

^ 1 6 4

4

IV
4f

*— 82

12

10

io.-_' ,

10

30

Határozzuk meg először az adott szállítási programhoz tar-
tozó szállítási költséget, célfüggvényértéket. Ez a követke-
ző:

z = 4-10 + 8-2 + 16-4 + 18-4 + 16-8 + 10«2 =
= 40 + 16 + 64 + 72 + 128 + 20 = 340

Mi már ismerjük azt is, hogy a szimplex módszerrel megha-
tározott szállítási program kevesebb költséggel valósitható
meg, ennélfogva ez a szállítási program nem lehet optimális.
A programot tehát javítani lehet.

Induljunk ki ismét az eredeti feladatból, ismét kikeresve
a legkisebb költséget, s erre programozva a lehetséges maxi-
malis szállítási feladatot. Ezután keressük ki a nagyságrend-
re következő legkisebb elemet és erre programozzunk. Ez most
az első sor harsadik oszlopában volna, de mivel az első sor-
ban már nem programozhatunk /A tárolóhelyről már mindent el-
szállitottunk/ a második sor harmadik és a harmadik sor negye-
dik elemére programozhatunk /itt a szállítási költség 8 egy-
ség/. Ezután következik a második sor második eleme, majd a
negyedik sor első és második eleme. Jelöljük az elvégzett
feladatot táblázatban /lásd következő oldalon/.



- 318 -

A

B

C

I

10

20

182 —

2

II

8

16f
18*

12

III

6

- 8 4

X

16

11

IV

1,
\ 2

12

10

10

10

30

A szállitási költség:

4-10 + 8-2 + 8-4 + 16-6 + 18-6 + 18-2

+ 96 + 108 + 36 = 328

+ 16 + 32 +

A szállitási költség most az előbbi 340 helyett csak 328,
tehát sikerült jobb programot előállitani.

Kíséreljünk meg ismét más megoldást. Induljunk ki az első
sor második oszlop által meghatározott helyről és irjuk elő,
hogy A tárolóhelyről II. rendeltetési helyre 10 egységet
szállitunk. A II. rendeltetési hely fennmaradó 2 egységnyi
igényét elégítsük ki B tárolóhelyről. A B tárolóhelyen
fennmaradt mennyiségből programozzunk4-4 egységet a III.ésIV,
rendeltetési helyre. Végül a C tárolóhelyen lévő 10 egy-
ségből 2 egységet az I. rendeltetési helyre,8 egységet a
IV. rendeltetési helyre programozzunk. Foglaljuk ezt a meg-
oldást táblázatba:

A

B

C

I

10

20

18 2

2

II

8i0

162

18

12

III

6

8 4

16

4

IV

4

14 4

8 8

12

10

10

10

30

Ujabb programot kaptunk. Az ehhez tartozó szállitási
költség:

8-10 + 16'2 + 8-4 + 14-4 + 18-2 +

+ 56 + 36 + 64 = 300

80 + 32 + 32 +
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Ismét kevesebb a szállítási költség, de a szimplex mód-
szerrel történt megoldásból tudjuk, hogy ennél is lehetsé-
ges jobb szállitási program. Kitűnt az is, hogy a feladat-
nak több lehetséges megoldása is van, ezekhez különböző cél-
függvényértékek tartoznak, s célunk kiválasztani az optimá-
lis megoldást, azt, amelyhez a legkisebb célfüggvényérték
tartozik. Felvetődik a kérdés, lehetséges-e az optimális
megoldás megtalálására a szimplex módszer mellett valamilyen
más eljárást alkalmazni, amely gyorsabban, kevesebb és egy-
szerűbb számítási munkával vezet el a szállitási feladat
megoldá sáho z.

A probléma megoldását segíti elő a költségmátrix redukálá-
sa. Ez a költségmátrix olyan átalakítását segíti elő, hogy a
költségmátrixban olyan költségelemek legyenek, amelyek irány-
mutatóak a szállítások szétosztásában.

A költségmátrix redukálását végrehajthatjuk sorok, vagy
oszlopok szerint. Ugy végezzük, hogy a költségelemekből le-
vonjuk a sorok, vagy oszlopok legkisebb elemeit.

Vegyük az eddigi számpéldánkat és redukáljuk a költség-
mátrixot előbb a sorok, majd az oszlopok szerint és foglal-
juk az adatokat táblázatba:

Az eredeti költségmátrix:

A
B
C

A sorok

A
B
C

I

10
20
18

szerint

I

6
12
10

II

8
16
18

redukált

II

4
8
10

III

6
8
16

IV

4
14
8

költségmátrix:

III

2
0
8

IV

0
6
0

Az első sorból ,4-et,-másodikból 8-at, harmadik sorból
8-at vontunk ki. Értelemszerű természetesen, hogy most ha
egy lehetséges szállitási programot meghatároznánk a cél-
függvény kiszámítása során a levont értékekkel is
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számolni kell.

Redukáljuk most a kapott költségmátrixot oszlopok sze-
rint is. A III. és IV. oszlopokban a legkisebb érték 0,
tehát ezek az oszlopok változatlanok maradnak. Az első osz-
lop viszont 6-al, a második 4-el redukálható.

Az oszlopok szerint redukált

A
B
C

I

0
6 •

4

II

0

4
6

III

2
0
8

IV

0
6
0

Mostmár a redukált költségmátrix minden sorában és min-
den oszlopában van 0 költségelem. Most a redukált költség-
mátrix szerint végezzük a szállitások programozását ugy,
hogy sorok szerint haladva először a legelső 0 elemre, majd
a következő 0 elemre programozzuk a maximális szállitási
feladatot. Ha a nulla elemekhez nem tudtuk a teljes mennyi-
séget programozni, akkor a következő legkisebb elemekre foly-
tatjuk a programozást.

A feladat elvégzését táblázatba foglalva szemléltetjük a
következők szerint,a redukált költségmátrixszal szemléltet-
ve.

A

B

C

I

0 2

6

4

2

II

0 8

44

6

12

III

2

0*

8

4

IV

0

6 2

oio

12

10

10

10

30

Megkaptunk ismét egy lehetséges szállitási programot.
Szemléltessük ezt az eredeti költségmátrix felhasználásá-
val /lásd következő oldalon/.

A programhoz tartozó szállitási költség:

lo-2 + 8-8 + 16«4 + 8-4 + 14-2 + 8-10 = 20 + 64 + 64 +

+ 32 + 28 + 80 = 288
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A

B

C

I

10*

20

18

2

II

8 8

16+

18

12

III

6

8*

16

4

IV

4

142
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Ez a program már közel jár az optimálishoz. Javítható
azonban ez a program is. Hem programoztunk szállítást az első
sor egyik nulla elemére,, Ezt az elemet is figyelembevevő elő-
állitható a következő megoldás:
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I
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Az eredeti költségmátrixszal szemléltetve:

A

B

C

I
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20

18

2

II

8 b
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18

12

III

6

8*

16

4

XV
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12
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10
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30

z = 10-2 + 8-6 + 4-2 + 16«6 + 8-4 + 8-10 = 20 + 48 +

+ 8 + 96 + 32 + 80 = 284

Ismét javitottuk tehát a szállítási programot. Sőt most
optimális programhoz is jutottunk, őe ezt csak azért tudjuk,
mert ismerjük a szimplex módszerrel történt megoldás ered-
ményét. Sajnos egyébként nem tudnánk, hogy optimális prog-
ramhoz jutottunk. Másrészt nagyobb méretű feladat esetén a



programok javítása már igen nagy figyelmet igém,-el. Mindkét
probléma nehézségeket okoshat a gyakorlati szállitási fela-
datok megoldásában., eaért ujabb módszerrel is megismerkedünk.

8.4. A Korda —Vogel módszer

A továbbiakban a Korda-Vogel-féle közelítő eljárással is-
merkedünk meg. Most is a redukált költségmátrixból indulunk
ki, majd képezzük a sorok és az oszlopok szerint a két mini-
mális költségelem különbségeit. /Jelöljük ezeket A -vei./
írjuk be ezeket egy új oszlopba, illetve sorba, hogy szem
előtt legyenek. Foglaljuk az adatokat táblázatba:

A
B
C

I

0

6
4

2

4

II

0

4
6

12

4

III

2

0

8

4
IY

>

IV

0

6
0

12

6

10
10
10

30

A.

2

4
4

A legnagyobb különbséget a IV. oszlopban találjuk. Prog-
ramozzunk ennek minimális elemeire maximális mennyiséget,
azaz a C sor IV. cszlopbs 10-et, az A sor IV. oszlop-
ba 2-t. Ezáltal a C tórolóhelyrőí a teljes mennyiséget
elszállítottuk és a IV. rendeltetési hely igényét kielégí-
tettük, az A tárolóhely készlete 8 egység maradt.

Készítsünk új táblázatot, amelyben hagyjuk el a C sort
és IV. oszlopot, s az A tárolóhely készletét 8 egységre
módosítsuk.

A

B
C

A

I

o2

6
•

2

6

II

0

4

•

12

4

III

2
0

•

4
2

IV

0

•

•

8

10

•

A.
2

4
•
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Az uj táblázatban újra képezzük a sorok és oszlopok sze-
rinti különbségeket és megismételjük az előbbi eljárást. En-
nek során kielégítjük az I. rendeltetési hely igényét és
az A feladóhely készlete 6 egységre csökken, azaz:

A
B
C

A

I

•
•

•

•

II

0 b

4
•

12

4

III

2

•

4

2

IV

•
•

•

•

6
10

•

•

2

4
•

•

A táblázatban a B sorhoz és II. oszlophoz tartozó dif-
ferencia egyforma, egyaránt 4- Ilyenkor vagy tetszés szerint
választunk sort, vagy oszlopot, vagy azt a sort, vagy oszlo-
pot választjuk, ahol a költségelemek nagyobbak.

A táblázatokba foglalt részmegoldásokat foglaljuk egy
táblázatba és már meg is kapjuk az előbbi optimális szálli-
tási programot.

o2

6
4
2

O6

4 6

6
12

2
O4
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4

o2

6
oio

12

10
10
10

30

Megjegyezzük, hogy nem szükséges minden lépésben uj táb-
lázatot szerkeszteni, elegendő a kihagyandó sorokat áthúzni
és az uj differenciákat meghatározni. Példánk alapján: lásd
következő oldalon.

8.5• Egyenlőtlenségek és korlátozások a szállítási fela-
datban — —

Eddig feltételeztük, hogy a tárolóhelyeken tárolt, elszál-
litandó mennyiség és a rendeltetési helyek igénye megegyezik.
A gyakorlatban ez a feltételezés nem mindig teljesül, gyak-
ran előfordul,hogy a rendelési helyek: összes igénye nem éri
el a tárolóhelyeken tárolt összes mennyiséget, vagy a rende-
lési helyek igénye meghaladja a tárolóhelyeken tárolt összes
mennyiséget.
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Ha a feladatot lineáris programozási feladatként szimplex
módszerrel oldjuk meg , akkor az azt eredményezi, hogy a
feltételeket egyenlőtlenségekkel fogalmazzuk meg. Ismeretes,
hogy ilyen esetben az egyenlőtlenség egyenletté alakitható
át. egységvektorok /úgynevezett hiányváltozók, vagy többlet-
vátozók/ beiktatásával a szóbanforgó feltételekhez. A hiány-
változó itt azt mutatja, hogy a térolt mennyiségből mennyire
nines megrendelés /rendeléshiány/ a többletváltozó pedig a
többlet megrendelést mutatja /rendéléstöbblet/.

Tegyük fel például, hogy feladatunkban a IV. rendelési
hely igénye 12 helyett 6 egység. A feladat lineáris progra-
mozási modellje most /a feltételeket egyenletekké alakitva/
a következő: lásd következő oldalon/.

Az u-j, Uo, u, tehát azt mutatja, hogy az A, B illetve

C tárolóhelyen tárolt mennyiségből mennyit kell továbbra is
tárolni. Természetesen az ezekhez tartozó szállitási költség
/a célfüggvénykoefficiens/ nulla, hiszen itt nem történik
szállitás.

A fenti logikát követjük akkor is, amikor a költségmátrix-
ot ugy alakitjuk át, hogy névleges állomást iktatunk be, a-
melyhez természetesen 0 költségelem tartozik. Jelöljük a név-
leges állomást U-el, atfcsr a költségmátrix táblázatunk a
következő:
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Csupán megjegyezzük, hogy a lineáris programozási modell-
ben a kiányváltozók jelölhetők x.

kai, vagy H^, N 2, N, illetve N.

is és ezek elhelyezhetők az:

15' 25' "35
'15' "25* "35

szimbólumok-

szimbólumokkal

X12» X13 f X14' s 2 1,

stb. elrendezésben is tetszés szerint.

Vegyük most azt az esetet amikor a rendeltetési helyek i-
génye meghaladja a tárolóhelyek kapacitását, mondjuk az I.
rendeltetési hely igénye most 2 helyett 6 egység. Most névle-
ges tárolóhelyet épitünk be a költségmátrixba, amelyhez 0
költségelemeket rendelünk, azaz:
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0

6

II

8

16
18
0

12

III
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4
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4
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12
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34

Értelemszerűen Írhatjuk fel most is a lineáris programo-
zási modell induló szimplex tábláját.

Az eddigiekben azt feltételeztük, hogy a feladat megoldá-
sát nem korlátozzuk. A gyakorlatban viszont gyakran kell a
feladatban korlátozásokat is megfogalmazni.

így például lehetséges, hogy a rendelés nem éri el a tá-
rolt mennyiséget, tehát az anyag egy részét továbbra Í3
tárolni kell, azonban el akarjuk érni, hogy az el nem
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szállított anyagokat egyetlen tárolóhelyen tároljuk, hogy
ne legyen szükség egyidejűleg több helyen is az anyag öreé-
sére, kezelésére, stb. Lehet követelményünk az is, hogy bi-
zonyos tárolóhelyről bizonyos rendelési helyre nem szabad
szállítani. Az ilyen korlátozásokat a szállítási feladatban
könnyen tudjuk kezelni, egyszerűen magas szállítási költsé-
get, úgynevezett tiltótarifát irunk elő azokra a helyekre
ahova nem szabad szállítást programozni. Ezt a magas költsé-
get M-el jelöljük.

Ha például a névleges állomások beiktatásával csak a C
tárolóhelyen engedünk további tárolást, és ha nem engedjük
meg, hogy A tárolóhelyről II. rendeltetési helyre szállít-
sunk, akkor költségmátrixunk a következő:
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A lineáris programozási modellben ugyancsak elérhetjük
tiltótarifa alkalmazásával, vagyis nagyon magas költség elő-
írásával a fenti követelményeket, de tudjuk azt is, hogy a
lineáris programozás erre más lehetőségeket is kínál.

8.6. Potenciálok módszere " ~

Az eddig tanult módszerek - a szimplex módszer kivételé-
vel - nem teszik lehetővé annak megnyugtató eldöntését,hogy
az előállított megoldás az optimális szállítási programot ad-
ja-e, vagy csak az egyil: lehetséges programot kaptuk meg. A
továbbiakban megismerjük a potenciálok módszerét, amely lehe-
tővé teszi egy induló lehetséges szállítási program fokozatos
javítását, s az így előállított ujabb és ujabb megoldásokról
azt is el tudjuk dönteni, hogy az optimális program-e?

Vegyük az előbbiekben már megismert redukált költségmátrix-
ot és egy lehetséges megoldást:~/lásd következő oldalon/.

A táblázatból látható, hogy egyes helyekre már szállítá-
sokat programoztunk /ezzk a kötött helyek/, másokra nem prog-
ramoztunk /ezek a ssebad hely3iTJZ
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A tárolóhelyek száma 3, a rendeltetési helyek száma 4,
összesen 7, a kötött helyek száma 6. /A kötött helyek száma
mindig eggyel kevesebb, mint a tároló- és a rendeltetési he-
lyek együttes száma. Ezt az értéket /kötött helyek számát/
kritikus számnak szokták nevezni.

Ha a fenti induló programban a kötött helyek mind nulla
elemnél fordulnának elő a megoldás optomális programot jelen-
tene. Ellenkező esetben a program javítható.

A program javítása a következők szerint történik:

Megvizsgáljuk mi történik, ha valamelyik szabad helyet
bevonjuk a programba.

Vegyük a második sor első elemét, ami szabad helyet mutat.
Ha ide 1 egységet programozunk, akkor a második sor második
elemére programozott mennyiséget 1 egységgel csökkenteni kell,
az első sor második eleméhez 1 egységgel többet, elaő elemé-
hez egy egységgel kevesebbet kell programozni. Tulajdonképpen
bástyamozgással egy kört irtunk le. A

0 2 — 08

I *
4

helyett, tehát a II
megoldást kapjuk.

Nézzük meg a két "körhöz" /a két részprogramhoz/ tartozó
szállítási költséget:

0-2+0-8+4-4+6-0 = 16 és 0>l + 0-9 + 4-3 + 6-1 = 18

A sáállitási költség tehát növekedett 2 egységgel. Ezt a

• = 2 . . . • . .
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szimbólummal jelöljük, kifejezve, hogy amennyiben a második
sor első helyére egy egységet programozva változtatjuk meg
EZ előbbi lehetséges programot, akkor a szállitási költség
2 egységgel megnövekszik. Ezt a szabad helyet tehát nem
célszerű bevonni a programba. A Aon értéke agyszerüen

kiszámítható ugy, hogy a szabad helyről kiindulva a költ-
Bégelemeket változó előjellel felirjuk és összevonjuk, azaz

A 2 X = 3-2+0-0 = 1

Végezzük el a körök alkotását bástyamozgással minden
szabad hely figyelembevételével és határozzuk meg a

értékeket:

I
08-« 2 2

| | A 1 3 = 2-0+4-0 = 6,

\ f A 1 4 = 0-0+4-6 = -2,

*• — - 62

32 — 08

I K 2
A^-*—(> Aon = 4-0+6-4+0-0 = 6,

x - o 1 0

62

= 6-O+6-4 = 8,

6 2

f A33 = 8-0+6-0 = 14,
,10

Az eredmény tehát:
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A A , J értékekből kitűnik, hogy a szállítási költség

csak azáltal csökkenthető, ha az első sor 4.oszlopát vonjuk
be a programba, mégpedig minden egység átprogramozása 2 egy-
séggel csökkenti a szállítási költséget.

Kérdés azonban, hogy a szállítandó mennyiségből hány egy-
ség programozható át erre a helyre, Ezt mindig az adott kör
legkisebb eleme határozza meg /hiszen egyik helyre sem prog-
ramozhatunk negatív mennyiséget/. Ez esetünkben 2 egység le-
het, mivel ezen a körön ez a legkisebb elem.

Az optimális program tehát:

0D
0

6 4

4 6
o1*

4

Készítsük el ismét a táblázatot, ugy, hogy a kötött helye-
ket Q jellel jelöljük, a szabad helyekre pedig írjuk be a

megfelelő ^. értékeket. Ekkor a költségváltozások mátrix-

szá* kapjuk, azaz:
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6

I I

0
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6

D
14

IV

- 2

D
D

Készítsünk a leirt módon köröket az optimálisnak tekin-
tett megoldáshoz és határozzuk meg a költségváltozások mát-
rixát. Az adatokat a következő táblázatba foglaltuk:
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12
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D
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Mostmár nem találunk negatív elemet a költségváltozá-
sok mátrixában, tehát a program tovább nem javitható.

Magyobb terjedelmű feladatok megoldásához számitógépet
veszünk igénybe.

8.7. Mezőgazdasági alkalmazások N

A mezőgazdaságban nem jellemző a tipikus szállítási prob-
léma, amikor több tárolóhely /feladóhely/ és több rendeltetés
si hely között kell a szállítási feladatot programozni. An-
nál inkább felmerül ez a feladat a mezőgazdasági termények
és termékek kereskedelmi szférájában, valamint a mezőgazda-
ság anyagellátásában.

Hem mindegy például, hogy az állami, vagy kereskedelmi
térolóhelyekre a termények szállítását hogyan szervezzük;,
meg, melyik mezőgazdasági vállalat melyik tárolóhelyre szál-
lit. Ugyancsak jelentős feladat lehet annak megszervezése,
hogy a műtrágyákat, vegyszereket és egyéb anyagokat melyik
vállalat melyik kereskedelmi tárolóhelyről kapja.

Jelentős feladat volna a mezőgazdasággal kapcsolatos va-
súti szállítások programozása.

A feldolgozó ipari, élelmiszeripari üzemeknél is alkalmaz-
ható volna a szállítások programozása, pl. melyik vállalat
melyik feldolgozó üzemhez szállítsa a gyümölosöt, konzervipa-
ri termékeket, cukorrépát, stb. feldolgozás céljából.

líem könnyű feladat ennek megoldása, annál inkább, mivel a
feladat önálló kereskedelmi és iparvállalatokhoz kapcsolódik,
ezek önállóan vásárolnak fel és önállóan értékesítenek. Ki le-
hetne dolgozni azonban ezek részére egy ajánlást, döntési
változatokat a felvásárlás és értékesítés körzetesítésére,
ami nem lenne kötelező, de ismernék a vállalatok, hogy az et-
től való eltérés milyen áldozatokkal jár. Egy kötelező felvá-
sárlási-értékesítési, szállítási terv, vagy kötelező körze-
tesítés nagyobb kárt okozna, mint amilyen haszonnal járna.
Hyugati országokban azonban élelmiszeripari vállalatok és
kereskedelmi cégek megbízásokat adnak kutatóknak a felvásár-
lások, illetve értékesítések körzetesítése számára, ajánla-
tok kidolgozására. Ezeket a körzetesitési ajánlatokat termé-
szetesen csak addig veszik figyelembe a vállalatok, ameddig
az számukra előnyös,

A mezőgazdasági vállalatoknál különösen nem merül fel a
szállítási feladat klasszikus esete, azaz hogy több tároló-
helyről kell egyidejűleg egynemű terméket elszállítani. De
a száliitásprogramozással azonos logikán alapszik az a fela-
dat, hogy ha például különböző táblákon kell a búzát kombájn-
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nal betakarítani és különböző tipusu és teljesítményű cz--
bájnnok állnak rendelkezésre, akkor melyik kombájnból ií:^
darabot küldjünk egyik,vagy másik táblára. Ez már egy elcrx-
tási feladat, amikor a különböző táblákon végzendő munkáJui
elosztjuk a kombájnnok között, vagy másként a komba j no i: E-
elosztjuk a táblák között. Márpedig a mezőgazdasági munka-
szervezésben igen sokféle ilyen elosztási feladat adódik.

Ugyanilyen elosztási feladat a műtrágyák elosztása tá:L£i
között. Ez esetben a mütrágyafelhasználás adott táblán tz'z'a
lethozamot és többletköltséget is jelent, azaz ezek küle-b-
ségeiből adódóan többletjövedelmet. Most tehát célfügg7é"2
nem a szállitási költség, hanem a többletjövedelem lene-,
aminek természetesen a maximumát keressük.

Sorolhatnánk még a mezőgazdasági alkalmazás lehetőségsii_
de ezzel később,más tárgy keretében foglalkozunk részlete:r-=ji
ben. Ha azonban végiggondoljuk az előbbi rövid összefoglalni
az alkalmazásokkal kapcsolatban, sikerül rájönni arra is, j
hogy a szállitásprogramozás és a lineáris programozás köziri
igen szoros kapcsolat van. J
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9. FEJEZET . .

Hálódiagramos eljárások

A hálódiagramos eljárás ötvözi a grafikus és numerikus
módszereket. Jól alkalmazható tervezési, szervezési, irá-
nyitási, ellenőrzési feladatok megoldáséra. Egyszerű, a fe-
ladatot grafikusan ábrázolja, majd numerikus módszerekkel
vizsgálja. A grafikus ábra gyakran egy kifeszitett hálóhoz
hasonlit, ezért is nevezik az ide tartozó módszereket hálódi-
agramos eljárásoknak, vagy hálótechnikai módszereknek,
vagy egyszerűen hálótervezésnek.

A hálódiagramos módszereket olyan folyamatok vizsgála-
tára alkalmazzuk, amelyek önálló részfolyamatokra bonthatók
és célunk e részfolyamatok között a logikai és időbeli
kapcsolatok vizsgálata, a sorrendiség es ütemezés megterve-
zése. A részfolyamatok logikai, és sorrendi kapcsolódásait
grafikusan ábrázoljuk, ami tulajdonképpen a folyamat logi-
kai modelljét képezi.

A hálótervezési módszerek nem optimumszámitási módszerek,
nem teszik lehetővé annak megállapítását sem, hogy egy-egy
megoldás optimális-e, vagy milyen mértékben tér el az opti-
málistól. Ennek ellenére a hálótechnika igen eredményesen
alkalmazható gazdasági problémák vizsgálatára, gazdasági fe-
ladatok hatékonyabb megoldásának tervezésére.

Az első jelentősebb publikáció 1957-ben jelent meg az
USA-ban. Közölte a kritikus út módszerét /Critical Path
Method, vagy rövidítve CPM/. Egy évvel később hozták nyil-
vánosságra a programellenőrző és kiértékelő technika mód-
szerét /Program Evolution and Rewiew Technique, vagy rövi-
dítve- PERT/ módszert, amelyet a Poláris rakétaprogram meg-
tervezéséhez alkalmaztak.

A későbbiekben főként a CPM és PERT módszer továbbfej-
lesztéseként újabb módszerek születtek, igy az erőforrás
allokációra a PAMPS módszer, a költségelemzésre a
PERT/COST illetve a LESS programrendszerek, majd Francia-
országban a 60-as években került kidolgozásra a potenciá-
lok módszere néven ismert /Metra Potential Method^ vagy
rövidítve MPM/ módszer, amely a hálószerkesztés szemlélet-
módjában is eltér a CPM és a PERT módszerektől.

Magyarországon eddig a hálódiagramos eljárásokat kuta-
tási, fejlesztési, tervezési, beruházás tervezési és szer-
vezési feladatoknál alkalmazták nagyobbrészt. Mezőgazdaság-
ban inkább csak kisérleti, kutatási alkalmazásokat találunk,
gyakorlati alkalmazása nem terjedt el. Valószínűleg ennek
az is oka, hogy az alkalmazás módszertani kérdései nincse-
nek kellően kidolgozva.
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Irányított gráfról beszélünk, ha lényeges az elerapárok
sorrendje is, azaz az összekötő élekkel kapcsolatban 'beszél-
hetünk kezdő és végpontokról. Ilyenkor az éleket nyilakkal
jelöljük.

Irányított gráf.

Az élek eg.Ymáshoz csatlakozó sorozata az út, vagy pálya.
Irányított gráfoknál útról akkor beszélhetünk ha az élek
irányításuknak megfelelően csatlakoznak egymáshoz.

tlt az irányítatlan és az irányított
gráfban

Körpálya és húrok az olyan út, /vagy pálya/ melynek kez-
dő és végpontja ugyanabban e csúcspontban van. Legegyszerűbb
út a húrok, amely csak egyetlen élből áll.

o
.+- Körpálya és húrok az irányított gráfban.
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9.1. Gráfelméleti hivatkozások

A hálódiagramos eljárások által alkalmazott hálók csú-
csokból /csomópontokból/ és az ezeket összekötő nyilakból
/élekből/ állnak. Az ilyen alakzatok matematikai vizsgála-
tával a gráf-elmélet foglalkozik.

Gráf alatt olyan halmazt értünk, amely egy alaphalmaz-
ból /pl. ponthalmazból/ és az alaphalmaz ellenpárjainak
halmazából áll.

Egy gráfot összefüggő gráfnak nevezünk, ha annak bár-
mely két pontja össze van kötve éllel, vagy élek szorzatá-
val, azaz az élek sorozata bármely pontból bármely pontba
elvezet. Bem összefüggő gráfról beszélünk, ha a fenti
feltétel nem teljesül

nem összefüggő
gráf

összefüggő
gráf.

Egy gráfot egyszerű gráfnak nevezünk, ha bármely két
pontja között legfeljebb csak egy él lehetséges, ellenkező
esetben, nem egyszerű gárfról beszélünk. A hálódiagramos
eljárások egyszerű- gráfokat alkalmaznak.

Egyszerű gráf Hem egyszerű gráf
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A körpálya mentes gráfokat fának is szokás nevezni.
Az irányított fa /irányított körpálya mentes gráf/ .tartal-
mazhat látszólagos körpályát, de az - az irányítást, is f i-
gyelembevéve - nem lehet körüljárható. A gyakorlatban meg-
valósítható folyamat hálója csakis irányított körpályamen-
tes gráf lehet.

Irányított fa Irányított fa, látszóla-
gos körpályákkal..

9.2. A kritikus út meghatározása

A kritikus út módszer /CPM/ a tevékenységek tervezésére
határozott időtartsmokat használ, szemben a PERT módszerrel,
amely hstárosatlans becsült időtartamokkal dolgozik és al-
kalmas sztochasztikus folyamatok vizsgálatára.

9*2.1. Logikai tervezés

A kritikus út módszerének alkalmazása során mindenek-
előtt számba kell venni a résztevékenységeket /illetve a
teljes folyamatot résztevékenységekre kell bontani/ s a
résztevékenységek kapcsolatai alapján fel kell építeni a
tevékenységek hálóját.
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Mindenekelőtt egy listát készítünk a tevékenységekről
ás megállapítjuk a tevékenységek sorrendjét. A tevékenysé-
gek között lehetnek fixtív, vagy látszattevékenységek, más-
ként üres tevékenységek is, amelyek nem jelentenek tevékeny-
séget, csak azt jelölik, hogy pl. K, tevékenység csak (J, te-
vékenység befejezése után kezdődnél! el. ~

Á tevékenységek /A, B, C, ..., M/ csúcspontokból in-
dulnak és csúcspontokba vezetnek. Ezek a csúcspontok a
tevékenységek kezdeteit ill. befejezéseit jelölik, s
számokkal vannak ellátva, s ezeket eseményeknek nevezzük.
A tevékenységek jelölhetők számpárokkal is, így az /i,j/
számpárral, ami azt jelenti, hogy azji-edik eseményből
kiinduló és a j-edik eseményben végződő tevékenységről
van szó, s természetesen i< j, vagyis az 1 aaemány meg-
előzi a j eseményt. Ennek alapján a tevékenységek jelölé-
sét el is hagyhatjuk, hiszen mindegyik élről /tevékeny-
ségről/ tudjuk, hogy az az /i,j/ tevékenységet jelenti.

9.2.2. Időtervezés

A logikai tervezés után meghatározzuk a tevékenységek
időszükségletét /hetekben, napokban, órákban tetszés sze-
rint/. Természetesen a látszattevékenyaégek időigénye
nulla. írjuk be a hálóba a tevékenységek időigényét.



Az időtervezés során célunk a feladat elvégzésének
idejét meghatározni. Ezt a i'eladat átfutási idejének.
átfutási iaŐEsb nevesaUU.

Az átfutási idő as a luguosszabb időtartamú út, amely
alat t a feladat cicgolaható. Eat az utat kritikus útnak n
veaik, mivsl ezen aa utón s résatavákenységea: elvégzásá-
bssJjsiiövetkeBŐ legkisebb IrsEsdelem ia az egész feladat
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elvégzésének késleltetésével jár együtt.

- * 3 • jLJgrlti kujLjj, JL . :s^ .f hat ár o zása

íogleii^u!- as eiőbísi háló tavákenyságeinek időtartamát
időtartam mátrixba, azaz írjuk be az /i,á/ tevékény-
k időtartamát aa i-ediíc sor 3-edií: oaslopába.
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több scr^/„ ;,J J,..1_^_J: iic>:crtar: adatot. A látszattevékeny-
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A feladat további elvégzésének: könnyebb megértéséhez
és a rövidebb tárgyaihatóság érdekében vezessük: be a kö-
vetkező jelöléseket:

i = egy tetszőleges esemény sorszáma /általá-
ban egy tevékenység kiinduló /kezdő/
eseménye./

i = egy tetszőleges eseasny sorszáma /általá-
ban egy tevékenység befejező eseménye./

/i,j/ = egy tetszőleges tevékenység kódja;

y/i,j/ = az i-edik eseményből a j-edik eseményhez
vezető tevékenység elvégzésének időtarta-
ma /időszükséglete, átfutási ideje/

tf/i/ = az i-edik esemény legkorábbi bekövetkezé-
si időpontja;

ts/i/ = az i-edik esemény legkésőbbi bekövetkezési
időpontja;

tfk/i,j/ = az /i,j/ tevékenyság legkorábbi kezdete;

tfv/i,j/ = az /i,j/ tevékenység legkorábbi befejezése;

tsk/i,j/ = az / i j / tevékenység legkésőbbi kezdete;

tsv/i,j/ = az /i,j/ tevékenység legkésőbbi befejezése;

T = a folyaoat teljes átfutási ideje;

P max/i,j/ = az /i,j/ tevékenység maximális tartslákideje;

Psz /i,j/ = az /i,j/ tevékenység szabad tartalákideje;

Pf /i,j/ = az / i 5 j / tevékenység független tartaláki-
deje;

P min/i,j/ = az /i,j/ tevékenység minimáliH tartalékideje.

Ás i-edik egeaéay ^e,gkoyábbi_ bekövetkegéseBoit időpontja

ftf/i/j az a legiiossza'Db időtartam, amely a kezdő időponttól
az i-edik eseményig terjedő' össses tevékenység végrahajtá-
sához szükséges. Ebből következik:, hogy asiennyiisn aa
i-edik esemény több utón is elsrnetős mindig a hosszabb
úttal számolunk.
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Határozzuk: meg a tf/i/ időtartamokat az előbbi
háló alcnján:

i •= I eseményig egy út vezet /O, 1/ aminál a j/0,1/
időtartamot találjuk, ami 7 egység. Tehát

jt7/l/ = 7J
i = 2 eseményig.

tí/2/ = tf/1/ + y/1,2/ = 7 + 5 = 12

tf/2/ =12

i = 3

tí/3/ = tf/1/ + y/1,3/ = 7 + 3 = 10

tf/3/ =10

i = 4

tf/4/ = tf/2/ + y/2,4/ = 12 + 4 = 16

|tf/4/ = 16|

i = 5

tf/5/ = tf/4/ + y/4 s5/ = 16 + 1 = 17

tf/5/ = tf/3/ + y/3,5/ = 10 + 6 = 16

tf/5/ = 17

Látjuk, hogy i = 5 eseményhez kát út vezet /i = 4 és
i = 3-ból/ a a hosszabbi utat vettüfe számításba.

i = 6

tf/6/ = tf/2/ + y/2,6/ = 12 + 2 = 14

[tf/6/ = 14
i = 7

tf/7/ = tf/4/ + y/4,7/ = 16 + 10 = 26

tf/7/ = tf/6/ + y/6,7/ = 14 + 0 = 14

itf/7/ = 261
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i =

tf/8/ = tf/5/ + y/5,8/ = 17 + 6 = 23

tf/8/ = tf/7/ + y/7,8/ = 26 + 4 = 30

[•tf/8/ = 30|

i = 9

tf/9/ = tf/7/ + y/7,9/ = 26 + 2 = 28

tf/9/ = tf/8/ + y/8,9/ = 30 + 5 = 35

tf/9/ = 35

1=10

tf/106 = tf/9/ + y/9,10/ = 35 + 8 = 43
[tf/10/ = 43

A fentiek szerint tehát a folyamat legkorábbi befeje-
zési időpontja a kezdéstől számítva /vagyis a folyamat
teljes átfutási ideje/ T = 46
Ezt az időtartamot kritikus útnak nevezzük. Ez azt is
jelenti, hogy az adott átfutási idő legalább 43 időegy-
ség. /Hasonlóképpen határoztuk meg az egyes események
legkorábbi bekövetkezésének ideját./

A kritikus úton lévő tevékenységek időigényében be-
következett változások a teljes átfutási idő módosulásá-
val járnak. Amennyiben a teljes átfutási idő változását
el akarjuk kerülni fontos, hogy a kritikus úton lévő
tevékenységek határidejét betartsuk.

Az i-edik esemény legkorábbi bekövetkezés! időpontja
egyben az /i.j/ tevékenység legkésőbbi befejezési időpont-
.iat is jelenti, hiszen az /i,j/ tevékenység csak az
i-edik esemény bekövetkezése után kezdődhet.

Az i-esemény legkésőbbi bekövetkezés! időpontja alatt
azt értjük, hogy a háló kezdőpontjától számítva legkésőbb
ekkor be kell következni az i-edik eseménynek. Ez az
időpont egyben az /i,j/ tevékenység legkorábbi kezdési
időpontja is. A legkésőbbi bekövatkezási időpontok /ts/1/
kiszámításait a hálón visszafelé haladva végezzük és ahol
többféle ut lehetságss a számítás eredményei közül a ki-
sebb értékűt vesssük.

Számítsuk ki a ts/±/ értékeket az előbbi háló alapján.
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i = 10

i = 9

i = 8

i = 7

1 = 6

1 = 5

1 = 4

1 = 3

i = 2

ts/10/ = tf/10/ = 43

ts/9/ = ts/10/ - y/9,10/ = 43-8 = 35

ts/9/ = 35

ts /8/ = ts/9/ - y/8,9/ = 35 - 5 = 30

ts /8/ = 30

ts /7/ = ts /8/ - y/7,8/ = 30 - 4 = 26

ts/7/ = ts/9/ - y/7,9/ = 35 - 2 = 33

ts/7/ = 26

ts/6/ = ts /7/ - y/6,7/ = 26 - 0 = 26

| t s / 6 / = 2~6J

ts/5/ = ts/8/ - y/5,8/ = 30 - 6 = 24

|ts/5/ = 24|

ts/4/ = ts/7/ - -v/4,7/ = 26 - 10 = 16
ts/4/ = ts/5/ - y/4,5/ = 24 - 1 = 23

ts/4/ = 16

ts/3/ = ts/5/ - y/3,5/ = 24 - 6 = 18

| ts /3/ = xa|

ts/2/ = ts/6/ - y/2,6/ = 26

ts/2/ = ts/4/ - y/2,4/ = 16

2 = 24

4 = 12

ts/2/ = 12
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i = 1

ts/1/ = ts/3/ - y/1,3/ = 1 8 - 3 - 1 5

ts/1/ = ts/2/ - y/1,2/ = 12 - 5 = 7

ts/1/ = 7

0 •

ta/O/ = ts/1/ - y/0,1/ = 7 - 7 = 0

ts/0/ = 0

Foglaljuk most össze az előbbi számításokat és az azok

alapján levonható következtetéseket:

A j-edik esemény legkorábbi bekövetkezést ideje

tf/j/ = ma* Ftf/i/ + y /i,M

Vagyis a legutolsó i-edik esemény legkorábbi befejezési
idejéhez hozzáadjuk az y/i,j/ tevékenység leghosszabb ide-
jét.

Amennyiben

tf/i/ = ts/i/

aaaz az i-edik tevékenység legkésőbbi befejezési és legké-
sőbbi kezdési időpontja egybeesik az ezen eseményekhez
tartozó út a kritikus út.

A tf/i/ és ts/i/ értékeket általában az időtartam
mátriaioz szokták írni, úgy hogy azt egy oszloppal kibőví-
tik a tf/i/ ás egy sorral kibővítik a ts/1/ értékek számára.
Szokás a mátrixot még egy sorral bővíteni ahová a
ts/i/ - tf/i/ értékeket írjuk be, azaz jelöljük. Ahol
ennek értéke nulla, azok a tevékenységek a kritikus utat
alkotják.

9.2.4. Időtartalékok

Az előbbiekben meghatároztuk a kritikus utat* amely
azt mutatja, hogy az adott feltételek mellett mi az az
időtartam, amely a feladat teljes átfutási idejéhez fel-
tétlenül szükséges.
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Megvizsgálhatjuk azonban, hogy pl. a termelói kapacitások
bővitésevel nem lehet-e a kritikus utat röviditeni. A ter-
melői kapacitások bővitáse most azt szolgálja, hogy a kri-
tikus utón lévő tevékenységek elvégzéséhez szükséges időt
rövidítsük. Lehetséges azonban, hogy a kritikus út mentén
lévő tevékenységek időigényét oly mértékben sikertil csök-
kenteni, hogy megváltozik maga a kritikus út meghatározása.

Annak eldöntéséhez, hogy a kritikus út megváltozott-e
segítségünkre van a nem kritikus tevékenységek időtartalé-
kainak meghatározása.

figyeljük csak meg hálónkat. Ahhoz, hogy az egyea te-
vékenységből az ötös tevékenységhez jussunk el, kétféle
lehetőségünk van. Az egy_ik amikor a hármas tevékenységen
keresztül haladunk, a másik út pedig a kettes és négyes
tevékenységen keresztíil vezet. Előbbi esetben 9 időegy-
ség, utóbbiban 10 időegység szükséges az út megtételéhez.
Előbbi út 1 időegység tartalákidővel rendelkezik, utóbbi-
nál nincs időtartalékunk, mivel a kritikus úton haladunk.
A tartalékidővel kapcsolatos számításokat a következők
szerint végezhetjük el.

Maximális tartalékidő meghatározásánál feltételezzük,
hogy a tevékenység a kezdő esemény legkorábbi bekövetke-
zés! időpontjában elkezdhető és megengedhető, hogy a vég-
esemény legkésőbbi időpontjában fejeződjön be, azaz az
/i,j/ tevékenységhez rendelkezésre álló idő ts/j/ - tf/i/
maximális tartalekidő tehát:

P max/i.j/ = ts/j/ - tf/i/ - y/i,j/

vagyis a rendelkezésre álló idő ás a szükséges idő különb-
sége.

Általában ezt az időt nem szoktuk teljesen felhasználni.

Szabad tartalekidő az a tartalékidő, amelynek minden
tevékenység eaetsa történő felhasználása sem jelent határ-
idő csúszást. Kiszámítása:

PSz/i,j/ = tf/j/ - tf/i/ - y/i,j/

Független tartalskidő meghatározásának célja a szabad
tartalákidő céljával azonos, csak itt nem a legkorábbi,
hanem a saág megengedhető legkésőbbi időpontokat vesszük
a számítáa alapjául, asaz

Pf/i,j/ = ts/j/ - ts/i/ - y/i,j/

A szabad és a független tartalekidő felhasználása csak
akkor nem okoz határidő csúszást, ha következetesek va-
gyunk és minden tevékenységnél egyaránt vagy a szabad,
vagy a fUggetlen tartalákidőt vesszük figyelembe.
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10. FEJEZET

SZIMXJIÁCIÓS MÓDSZEREK '

10.1. A szimuláció fogalma és alkalmazásának lehető-
ségei

Szimuláció színlelést jelent, vagyis olyan hely-
zetét teremteni, mintha a nem valóságos folyamatok valóságosak
lennének. Azokra az emberekre, akik valamilyen betegséget szin-
lelnek azt mondjuk, hogy csak szimulálnak. Valójában tehát nem
betegek, csak ugy tesznek, mintha azok lennének, olyan helyze-
tet teremtenek, hogy ugy látszon, mintha valóban betegek vol-
nának.

A gazdasági szimuláció azt jelenti, hogy a gazdaság terü-
letén olyan szituációkat hozunk létre, mintha azok valóságo-
sak volnának. Általában a gazdasági szimuláció kiinduló alap-
ját matematikai modellek képezik, tehát a szimulációt nem a
valóságos folyamatokon, hanem e folyamatokat jól kifejező ma-
tematikai modelleken végezzük.

A szimulációs módszerek igen sokszínűek, nincsejLaek merev
szabályokkal körülhatárolva, a legkülönbözőbb matematikai el-
járásokat is igénybevehetik és az alkalmazandó eljárásokat
mindig a vizsgált jelenség természete és a vizsgálat célja
alapján kell megválasztani. Nem tűzik ki a szimulációs eljá-
rások optimumok egzakt meghatározását sem, bár gyakran töre-
kednek az optimum megközelítésére. Legtöbbször még azt sem
tudjuk megmondani a szimulációs módszerek alkalmazása során,
hogy mennyire közelitettük meg az optimumot. Gyakran nem is
célunk az optimum keresése, csupán annak megállapítását kiván-
juk elérni, hogy hogyan viselkedik a vizsgált jelenség, vagy
folyamat különböző szituációkban, különböző hatásokra.

A szimuláció kötetlensége miatt nagy lehetőségekkel rendel-
kezik, akkor is, amikor az analitikus módszerek már nem, vagy
igen korlátozottan alkalmazhatók. Ez is egyik oka annak,
hogy a szimulációs módszerek gyorsan teret nyertek annak elle-
nére, hogy megjelenésükkor már számos analitikus módszer ke-
rült alkalmazásra a gazdasági vizsgálatokban.

A vizsgált jelenség természetétől és a vizsgálat szemléle-
tétől függően beszélünk statikus és dinamikus szimulációról,
ezen belül szimultán és rekurziv szimulációról. Más szempontból
megkülönböztetünk determinisztikus és sztochasztikus szimulá-
ciót. A szimuláció során a vizsgált jelenség változók "lehet-
nek: folytonos és diszkrét változók. Speciális típusát képezik
a szimulációnak a heurisztikus eljárások, amikor az emberi
gondolkodás folyamatára építjük a szimulálást, az emberi prob-
lémamegoldó folyamatot játszuk le számitógépen.

A szimuláció gyakran egészen egyszerű megoldásokat alkalmaz,
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amikor a vizsgálathoz számitógépre nincs szükség, máskor
igen bonyolult logikai és matematikai feladatok megoldására
yan szükség, ami elképzelhetetlen számitógép nélkül.

10.2. A szimuláció folyamata "-

A szimuláció ugyan nem tartalmaz szigurú kötöttségeket,
de bizonyos általános elvek itt is vannak, amelyeket be kell
tartani. A szimuláció folyamatainak rövid leírásában ezeket
az elveket foglaljuk össze. Valójában ezeket az elveket más
operációkutatási eljárások alkalmazása során is figyelembe
kell venni.

Az első lépés a feladat megfogalmazása. Ennek során rög-
zitjük a vizsgálat célját, körülhatároljuk a vizsgálandó
problémákat és területet. Célul tűzhetjük ki elméleti, tudo-
mányos vizsgálatok elvégzését, hipotézisek és feltételezések
ellenőrzését, valamely jelenség alakulásának vizsgálatát kü-
lönböző körülmények között, vagy gyakorlati döntések megalapo-
zását.

A következő lépés a vizsgált terület tanulmányozása. Ennek
sorén információkat gyűjtünk es elemezzük a vizsgálat terüle-
tét. Az információk gyakran sok adat begyűjtését, az elemzés
ezeknek az adatoknak a logikai és matematikai elemzését igény-
li. Pel kell tárni a vizsgált jelenség belső struktúráját és
más jelenségekhez való kapcsolódásait, ezek természetét és
mozgáslehetőségeit. A vizsgált jelenség vagy terület legtöbb-
ször valamilyen rendszert jelent, amelynek belső kapcsolatait
az alrendszerei és elemei közötti kapcsolatok, külső kapcso-
latait más rendszerekkel és alrendszerekkel, illetve más
rendszerek elemeivel való kapcsolatai jelentik. A rendszerek
vizsgálata csakis rendszerszemlélettel lehet hatékony, ami-
hez nagy segitséget nyújthatnak a rendszerelemzési módszerek.

A következő lépés a matematikai.modell, vagy matematikai
modellek összeállítása. Lehetséges ugyanis, hogy a szimuláció
során több matematikai modellt, esetleg modellsorozatot alkal-
mazunk. A sorozathoz tartozó modellek egymás eredményeit is
felhasználhatják és egymással horizontális, vagy vertikális
kapcsolatban lehetnek.

A modell paramétereinek valósághű meghatározása általában
igen lényeges. Esetenkent azonban éppen a vizsgálat céljának
teljesítése szükségessé teheti, hogy a valóságtól elvonatkoz-
tassunk és irracionális szituációkat is megvizsgáljunk.

A modell paraméterei lehetnek tény adatok, normatív adatok,
vagy becsült adatok. A becsült adatok származhatnak objek-
tív becslési eljárásokból, vagy szubjektív, szakértői becslé-
sekből.



- 34-7 -

A modell matematikai összefüggései is igen különbözők
lehetnek ás ennek során igen különböző matematikai eljárá-
sokat alkalmazhatunk.

A matematikai modellek összeállítása ás ellenőrzése után
kerül sor a modellek megoldására, számitógépes feldolgozá-
sára. Ennek során alkalmazhatunk már megirt számítógépes
programokat, vagy szükség lehet számitógépes programok meg-
írására is. A szimulációs számitógépes programok írásának
megkönnyítésére szimulációs programozási nyelveket fejlesz-
tettek ki /DYNAMO, SIMULATE, FORDYN, SIMSCRIPT, SIMULA,
stb./. Ezek általában nem általános célú, hanem feladat-
orientált nyelvek.

Végül a matematikai számítások elvégzése után /va^y
azzal egyidejűleg/ kerül sor az eredmények értékelésére,
aminek során szakmailag értékeljük a megoldás eredményeit,
vonunk le következtetéseket, vagy jutunk el döntési lehe-
tőségek éa javaslatok megfogalmazásához. Ennek során to-
vábbi matematikai vizsgálatokra is sor kerülhet.

A fenti általános elveken belül adódó sokrátíiség is oka
annak, hogy a szimulációval foglalkozó szakkönyvek nem általá-
nos elméleti és módszertani leírásokkal foglalkoznak, hanem
konkrét példákat mutatnak be a szimuláció különböző alkalma-
zásaira. Ilyen példákkal majd a számítástechnika mezőgazda-
sági alkalmazása tanagyagban fogunk találkozni. Bizonyos
azonban, hogy a szimuláció még nem foglalta el a mezőgazda-
ságban sem megillető helyét, s valószínűleg ennek lényeges
oka, hogy nincsenek még kellően kidolgozva a mezőgazdasági
alkalmazások módszertani kérdései és nincsenek msg az al-
kalmazáshoz szükséges, könnyen üzemeltethető számítógépes
rendszerek sem.-
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11. FEJEZET

ÁGAZATI KAPCSOLATOK ELEMZÉSE

IHKIT - OUTPUT ANALÍZIS

Az input - output analízis /vagy ráfordítások - kibq-
csájtások elemzése/ módszert W. Leontief Szovjetunióból
származott amerikai közgazdász kezdeményezte. Inkább nép-
gazdasági szintű vizsgálatok során használják fel, a nép-
gazdaság lineáris programozási modelljére támaszkodik és
alapvetően a lineáris programozás módszerét alkalmazza.

Tételezzük fel, hog:y a népgazdaságot n ágazatra oszt-
juk fel / különböző rsszletezss lehetséges/. Jelöljük az
egyes ágazatok évi termelését

Az egyes ágazatok termelésük egy részét önmaguk is

felhasználhatják, más részét a többi ágazatnak adják át,

végül egy részét fogyasztásra, kivitelre és készletek

növelésére használják. Előbbieket jelöljük x^., utóbbit

'i-vel.

Az i-edik ágazat termeisse tehát

*ln
Az előbbiek alapján elkészithetjük az ágazati kapcso-

latok táblázatát.

Bruttó
termelés

•

x n

in

X

Ágazat- áramlások
közi

xol xo2 '•• xon

xll X12 ••• xln

xnl XEI2 *••* xnn

Nettó
termelés

yo

y 2

•

y n

n^ mg ... ^ |

z x ... x
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A táblázatban baloldalt a bruttó termelést tüntettük
fel, jobboldalt a gettó kibqcssjtást, középen az ágazatközi
input - outnut mátrixot találjuk. Kiegészítettük msg a
táblázatot a munkaerő sorával, amiből kiolvashatjuk, hogy

az x munkaerő kát részre oszlik, ás x . jelenti a j-edik

ágazatban felhasznált munkaerőmennyiságet, y pedig a nem

termelő ágban felhasznált / illetve a termelő ágazatokban

nem hasznosított / munkaerőt.

A táblázat adatai megoldhatók természetes egységekben
/ilyenkor a mátrixnak csak soraira értelmezzük az összea-
dást/, vagy pénzértékben /sorok és oszlopok összeadása is
értelmezhető?, amikoris a táblázatban az m. értékeket is
beírhatjuk, mint az egyes ágazatok nyereségét.

Host a következő egyenleteket írhatjuk fel:

Termelési mérlegegyenletek;

*i = 2 1 *í3 + y t / i= 1,2 n/

Munkaerő mérleg:
n

Ha a mátrix elemeit pénzértékben adtuk meg, akkor
a mátrix oszlopai összeadhatók, s a kapott eredmények
mutatják az egyes ágazatok termelése során felhasznált
termelési eszközök koTTsTietT '

?1. az also ágazatnál

/agy az i-edik ágasainál

A tel.ies termelés kö
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mivel ez esetben x • az i-edik ágazatban foglalkoztatott
munkaerő termelési költsége.

Mivel az i-edik ágazat nyeresége

• m i = *i " zi

ezért az n

összegek költssgegyenletek, s következésképpen

n n

és

Ebből megkapjuk az ágazatközi áramlások egyensúlyának
egyenleteit, ha az egyenlet mindkét oldalain elhagyjuk
az x.J tagokat

n * + H = z + r + "

A tsl.-jes társadalmi termék /
n n / n

i=l x i=l M - l

n n «

vagy
n, _ / n • n n n

*>— "5— x- • + *•>— x . +

n
+
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A fenti egyenletekből előállítható a

n n n
~oi

i=l i=l i=l

feltétel, azaz . '

a nettó társadalmi termák egyenlő a nemzeti jövedelemmel.

Az

a = i.i /i= 1,2, ..r, n/

X3 /j= 1,2, .... n/

megmutatja, hogy a j-edik ágazat egységnyi termelésének
előállításához mennyit használ fel az i-edik ágazat termé-
kéből, azaz a fajlagos felhasználást, vagy technikai -
technológiai együtthatót kaptuk meg.

A j-edik ágazat által felhasznált munkaerő mennyiség

Ennek alapján a termelés mérlegegyenletei az

n

illetve

Az utóbbi egyenletrendszer a következőképpen is felir-
ható:

~ a 21 /! ~ a22/'3:2 " ••• ~ a2a zn = y2

" anl z l " an2 Z 2 " * " + f l ~ ann/:£n = yn



- 353 -

Ebből kiemelhetjük a technikai - technológiai mátrixot:

u =

1 - a11

a21

anl

- a

1 - a22

an2

In

a2n

1 - a
nn

ami felírható a következő formában is:

M= E - A =

1

0

*

0

0 .

1 .

A

0 .

. . 0

. . 0

*-

. . 1

-

all
a21
*

aul

ai2 * *

a22 * *
*

au2 ' *

• a14

* a24

•

- ann

/Vessük egybe a szalla,gmátrixoknál megismert £
mátrixszal!/ ~

Ennek alapján a termelési mérlegegyenlet
a második formulát alkalmazva

/E - A/ x = y_

Ha viszont az E - A mátrixnak van inverze, akkor

x = / B - A r1 x
és az M = E - A mátrir

Minkoweki - Leontief - féle mátrix, amit a mátrixok
típusainál megismerhetünk.

Ha természetes egységekkel és nem pénzértékben kívánjuk
elemezni az ágazati kapcsolatokat, akkor a következőket
kapjuk:
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Bruttó
termelés

Qo

«1

Q2

•
•
M

Ágazatközi áramlások

qol %2 ' ' • %n

q n q 1 2 . . . q l 0

q 2 1 q 2 2 . . . q 2 n

* « •
• « •

^nl qn2 ' * ' ^nn

líettó
termelés

"1

q2

•
•

ahol

*oi'
munkaerő

Q-i i q--i» qn-
 a bruttó termelés, ágazatközi termékmennyiségek

X ÍJ X
ss a nettó kibocaájtás.

A természetes egységekben ás a pénzértékben megadott
táblázatok között kapcsolat teremthető a

termákárak segítségével, azaz

A termelés technikai - technológiai együtthatói
természetes egységben

c;.M / i= 1,2, ..., n/

Q. / 3= 1,2, . . . , n/

a nunkaerőfelísasználás /nap, óra stb./
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A termelés mérlegegyenletei természetes egységben

illetve
n

A pénzértékben megadott kapcsolatokhoz hasonlóan
juthatunk el az

feltételhez, majd a technikai - technológiai mátrix
kiemeléséhez ás a

/S - B/ £ = £

s innen a . .

Q = /E - B/"1 q

feltételekhez, ahol E - B Minkowski - Leontief féle
mátrix. ~

További összefüggések aa árak, bérek és nyereségek
közötti kapcsolatok vizsgálatához.

•Ismerjük illetve könnyen belátható, hogy

, = P, Q.

= Poboi Qi

= Pjbji Qi

ahol

Qi
nem más, mint az i-edik ágazatban a tsrmákegységgsl elér-
hető nyereség.
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Pi«i = V o i «i jj
3-1

a az egyenlet mindkát oldalát Q^-vel osztva kapjuk,
n

Pi = Poboi + £_ Pjbji + ri
3=1

ami megmutatja azt az összefüggést, hogyan függ az i-edik
ágazat egységnyi termékének ára a többi termék egységárá-
tól, a munkabértől, a nyereségtől ás a technikai - techno-
lógiai együtthatóktól /b,H-ktől/.

Ha ezeket az egyenleteket részletesen felírjuk a
többi tényezőt rögzítve az egyenletrendszer megoldásával
meg tudjuk határozni a vizsgált tényezőt.
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